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A CRITICAL EVALUATION OF METHODS FOR CALCULATING
TRANSPORT COEFFICIENTS OF PARTIALLY
AND FULLY IONIZED GASES
By Warren F. Ahtye

Ames Research Center
Moffett Field, Calif.

SUMMARY “45("7_@—"

The basic transport coefficients of partially ionized argon have been
calculated by the rigorous second-order Chapman-Enskog formulation. Compari-
sons were made between these values and the ones calculated by existing meth-
cds of less accuracy. The latter values for the viscosity agree with those
for the second-order expression within a few percent. However, values of the
second order expression for the translational thermal conductivity and for
certain multicomponent diffusion coefficients are larger by 25 to 50 percent
at large degrees of ionization. Values of the second order expression for the
electrical conductivity are smaller by an order of magnitude at small degrees
of ionization.

A comparison of the electrical conductivity values calculated by the
rigorous second-order Chapman-Enskog formulation with experimental wvalues
indicates that this approach is valid for calculating electrical conductivity
and further suggests that the same approach is reasonable for calculating the
translational thermal conductivity.

The existing methods yield zero values for the thermal diffusion coeffi-
cients. The more exact theory used in the paper predicts appreciable effects
of thermal diffusion. Comparisons of the thermal diffusion coefficients for
the various species indicate that the diffusive motion of the atom and ion are
strongly coupled, and are almost independent of the diffusive motion of the

electron up to high degrees of ionization.
t

The existing method for predicting the reactive and thermal diffusive
components of the thermal conductivity is inexact in many areas, the main
defect being the neglect of the charge separation field. A cursory examina-
tion of the problem indicates that these two components would not be a con-
stant for a specified temperature, but would vary in the direction of the
temperature gradient, thereby increasing the complexity of the solution.
Until the difficulty is resolved, accurate predictions of the last two compo-
nents of the thermal conductivity for a partially ionized gas will not be
possible.

The second-order values of thelelectrical conductivity and translational
thermal conductivity for fully ionized argon are compared with those calcu-
lated by the simultaneous collision approach of Spitzer. The Spitzer approach
yields thermal conductivity values which are larger by a factor of three, gue
to 1ts neglect of ion-ion interactions.




INTRODUCTION i

An object traveling through an atmospheric medium at low speeds has
almost none of its kinetic energy converted into internal excitation of the
surrounding gas molecules. As the speed is increased, the molecules undergo
rotational and vibrational exciltations, along with electronic excitation, then
dissociation, and finally various stages of ionization. Existing methods
(refs. 1 to 6) for calculating transport properties of gases at increasingly
higher temperatures have undergone an analogous evolution. The basis for the
calculation of transport properties 1s the Chapman-Enskog approach which was
derived for a nonreactive mixture of monatomic gases (i.e., no internal exci-
tation) at relatively low temperatures (refs. 7 and 8). A great amount of
foresight was used in the complete formulation of the problem, for there exist
terms which become appreciable only for reactive and/or ionized gases. Unfor-
tunately, order of magnitude examinations of these terms for the case of mon-
atomic gases near room temperature resulted in many approximations which have
been retained for dissocilating and ilonizing gases. For polyatomic molecules
the thermal conductivity was modified by the Eucken correction (ref. 8) to
account for the energy exchange between the translational and internal (i.e.,
vibrational and rotational) modes. At higher temperatures, dissociation of
the polyatomic molecules becomes a predominant effect. Butler and Brokaw
(ref. 9) re-examined the Chapman-Enskog formulation for a dissociating gas,
and concluded that the reaction energy must be added to the energy diffusion
term. Consequently, they derived a simple expression to account for this
reaction energy in the thermal conductivity. The existing methods in refer-
ences 1 through 6 for calculating transport properties of a partially ionized
gas contain nothing conceptually different. For example, the Butler and
Brokaw expression for the reactive thermal conductivity was retained, with the
ionization potential used in place of the dissociation energy.

To assess the validity of these approximate methods, the experimental and
theoretical thermal conductivity of nitrogen are compared in figure 1. The
experimental data were obtained from measurements in a cylindrical cascade arc
by Maecker (ref. 10); the experiment was performed at atmospheric pressure for
temperatures ranging as high as lS,OOOO K (corresponding to 50-percent ioniza-
tion). A wide range of arc currents was also used. The theoretical values
were calculated by the existing methods and are based on what is believed to
be the most accurate intermolecular potential data. For example, the wr-n
charge-exchange cross section, recently calculated by Knof, Mason, and
Vanderslice (ref. 11), is used. The arc data show fairly good agreement in the
region of dissociation. This is substantiated by the shock tube experiments
described in references L and 12, where heat transfer was measured with a thin
film gage. At the point where ionization is initiated, the experimental arc
values increase more rapidly than the predicted values and show no signs of
peaking as predicted by the theory. At the highest temperature attained the
experimental values are higher by almost an order of magnitude. However, it
should be pointed out that there may be either an experimentally induced error
or an unpredicted phenomenon, for the experimental values of the total thermal
conductivity at a given temperature increase as the arc current is increased.




Cohsequently, the comparison in figure 1 should be considered as only a rough
indication of the accuracy of the approximate methods for calculating
transport coefficients.

These comparisons indicate that the assumptions and spproximations being
used for most calculations should be re-evaluated for partially and fully
ionized gases. A discrepancy may be attributed to the following differences
in the system: (l) The magnitude and range of intermclecular forces between
charged particles are orders of magnitude greater than those between neutral
particles; and (2) a much greater mass disparity exists for the interacting
species due to the presence of free electrons. The results of figure 1 also
point out the need for more accurate experimental data in the region of 50-
percent ionization (15,000O K) where a peak is predicted, and in regions of
even higher degrees of ionization where such effects as thermal diffusion of
electrons may become important. Development of a cascade arc producing much
higher temperatures does not appear too promising (ref. 13). However, arc-
driven shock tubes operating at much lower pressures are capable of producing
mich higher temperatures and degrees of ionization (ref. 1k).

The primary purpose of this paper 1s to determine whether the transport
coefficients of partially and fully ionized gas can be more accurately deter-
mined by the second-order Chapman-Enskog formulation. The approach used is to
start from the basic equation, the Boltzmann eguation, and obtain as accurate
a calculation of transport coefficients as possible. These values are then
compared with those calculated by existing methods, in order to point ocut the
magnitude of the errors incurred by the use of these methods. Numerical val-
ues are obtained by using the atomic properties of argon. The choice of argon
is based on the availability of intermolecular potentials and the relative
ease required for the calculation of its transport coefficients. For the
transport coefficients where the quantitative theory is still wanting, a qual-
itative discussicon will be made.

Equilibrium thermodynamic properties are essential ingredients in any
experimental or theoretical investigation of transport coefficients. The cal-
culation of the thermodynamic properties of partially ionized argon is briefly
described in appendix A. Shock-wave properties can be useful for any antici-
pated shock-tube determination of the transport properties of partially
ionized argon. The calculation of these properties is briefly described in
appendix B.

SYMBOLS
a speed of sound at zero frequency
ai, bi, . .. stoichiometric coefficients for components Aj, Bi,
A argon atom
At argon ion



impact parameter

specific heat per mol at constant pressure
specific heat per mol at constant density
milticomponent diffusion coefficient

ambipolar diffusion coefficient

coefficient of thermal diffusion

coefficient of diffusion for binary mixture
base of natural logarithms, also electron charge
electron

energy per mol

first ilonization potential

charge separation field

velocity distribution function for single particle
Maxwellian velocity distribution function
degeneracy of 1ith state

initial relative speed in binary system
Planck's constant, also Debye shielding length
enthalpy per unit mass

enthalpy per mol

element of viscosity determinant

ion

current density

Boltzmann's constant

chemical equilibrium constant for pressure units

mean free path




mass of particle
Mach number
molecular weight per mol

electron quantum number, also concentration in particles per unit
volume

pressure
reference pressure, 1 atm

partial pressure

momentum flux vector

energy flux vector

element of thermal conductivity determinant

total partition function

element of thermal diffusion determinant

total partition function for a standard state of unit pressure, pQ
distance between particles

universal gas constant, energy per mol per deg
entropy per mol

entropy per mol of component 1 at 1 atm pressure
absolute temperature

velocity with reference to incident shock wave
unit tensor

molecular velocity

volume

diffusion velocity

velocity with reference to reflected shock wave

reduced velocity



mol fraction
total force
compressibility
‘o

ratio of specific heats, =
v

reduced initial relative speed of colliding particles in binary
systen

fraction of atoms which have become ionized, also constant in
Lennard-Jones potential

energy of the 1ith state
coefficient of viscosity
total coefficient of thermal conductivity

coefficlent of thermal conductivity due to thermal diffusive
effect

coefficient of thermal conductivity due to chemical reaction
coefficient of thermal conductivity due to atomic collision
mobility

reduced mass for binary system

nunber of species

collision frequency

consecutive product

density

electrical conductivity

collision diameter

intermolecular potential

deflection angle

collision integral of order 1,s




;gg’l) diffusion cross section
ﬁ§§’2) viscosity cross section
Subscripts
A atom
e electron
13 binary interaction between particles 1 and J
1,5, . particles of type i, J, .
I ion
m degree of Sonine polynomial
P constant pressure process
o} constant density process
1 argon atom also initial conditions in gas medium
2 argon ion also conditions behind incident shock wave
3 electron also conditions behind reflected shock wave

CALCULATION OF SECOND-ORDER BASIC TRANSPORT COEFFICIENTS

Physical Model

Argon is a monatomic gas whose thermodynamic and transport properties are
essentially determined by the effects of its 18 orbital electrons, exclusive
of mass effects. In principle, excitation of any degree of ionization of
these electrons can occur. For the range of temperatures and pressures
described in this paper, it will be assumed that only single ionization occurs.
A general study of argon plasms was made in reference 15, where it was assumed
that all degrees of ionization can occur simultaneously. The analysis showed
that single ionization is essentially completed before double ionization
becomes apprecilable. As a result, the use of the thermodynamic and transport
properties in this paper should be limited, for a given pressure, to the tem-
perature at which argon approaches the fully ionized state (z < 2.00).

The ideal gas law
pV = NRT = [N(e-) + N(a) + N(a*)IRT (1)
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is used, where N, the number of mols, is a function of the additional particles
produced by the single ionization. Equation (l) implies that the particles
spend the greatest part of their time in field-free space, but that short-
range interactions can occur. This assumption is violated by the existence of
Coulomb forces. However, equation (1) is used throughout because the correc-
tions are believed to be relatively small (see appendix A), and its use
greatly simplifies the calculations.

Outline of Derivation of Transport Coefficients

The Boltzmann integro-differential equation is assumed to be the basils
for calculating transport coefficients of a partially ionized gas. This equa-
tion specifies £, the distribution function for a single particle of species
i. The assumption of the single particle distribution function implies that
only binary collisions are considered. This assumption restricts the theory
to low-density gases and also ilmposes a restriction that the range of inter-
molecular forces must be smaller than the interparticle spacing.

For equilibrium situations the distribution function is given by the
well-known Maxwell-Boltzmann distribution

f = Il ml 3/2exp - ﬂ (2)
O3 1\ 2rnkT 2kT

Any deviation from equilibrium (i.e., the distribution of eq. (2)) results in
transport phenomena. The Boltzmann equation in its most general form is given
as

of ofy 1 of (+) (-)

The quantity X;, the total force acting on the particle, includes any macro-
scopic force fields stemming from the particles in the system. One example

of the latter is the electromagnetic forces due to a charge separation field.
This field, in turn, is attributed to the difference in the ion and electron

concentration gradients. The quantities Fi-(+) and Fi'(-) are the rates at
which particles are added and removed by binary collisions from unit volume

of phase space. These terms account for both elastic and inelastic collisions.
Furthermore, the total macroscopic force is assumed to be much smaller than
the intermolecular forces. . As a result of this last assumption, charge separ-
ation effects do not enter into the expressions for the basic transport coef-
ficients (i.e., those prescribed only by collisional processes) such as the
viscosity, translational thermal conductivity, multicomponent diffusion coef-
ficients, thermal diffusion coefficients, and the electrical conductivity.
However, charge separation effects should affect macroscopic quantities such
as the concentration gradients of the ions and electrons.
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At this point two important simplifications are made. First, it is
assumed that all collisions are elastic (i.e., no intermal excitations or
chemical reactions). The resulting expression for the Boltzmann equation is

afi afi 1 afi

where the primes denote quantities after a collision. The approximate solu-
tion of this equation is vastly simplified if the force term is assumed to
arise from an external source only, and is a given function of space and time.

The next step is to expand the distribution function in a perturbation
series about the Maxwell-Boltzmann distribution, foi- The expansion is given
as

£y = foi(l P+ .. L) (5)

Tt can be seen from equation (2) that the first term in equation (5) is pro-
portional to nl. Chapman and Cowling (ref. 7) have shown that the second
term, fOi®, is proportional to n°, and any third term is proportional to n™t.
Since we are dealing with number densities of the order of 10%5 to 102° par-
ticles per cm?, then two terms should be sufficient to describe the nonequi-
librium distribution. This form is substituted back into the Boltzmann
equation (eq. (4)). One of the results of this substitution is that the per-
turbation function ¢ is linear in the derivatives OT/dr, the temperature
gradient, Ox;/dr, the concentration gradient, and Jv/dr, the gradient of the
mass average velocity. The linearity implies that these gradients be small

over a distance of one mean free path. TFor example,

LOT g (6)

T ox

mist be satisfied for the thermal conductivity to have any meaning, where 1
is the mean free path.

The steps leading from the Boltzmann equation to the final expressions
for the transport coefficients are quite complex. The main steps can be found
in reference 8. The result is that the perturbation function, ¢, is expressed
as a sum of integrals, where the integrands contain infinite series of Sonine
polynomials. The mth Sonine polynomial of order n is defined as

(m) (—1)j(m + n)l!
So (x) = (n+ 3)t(m- 3)t3t

X3 (1)

where j is a dummy index, and the variable x 1is the square of a reduced
. . 2 .
particle velocity, W;“, defined as

H.Z = —m—i-Vz (8)



The first two Sonine polynomials are

Sn(O)(x) 1 (9a)
(1)

S, (x) =n+ 1 -x (9p)

The transport coefficients are then obtained when the distribution function,
which is now expressed in terms of infinite series of Sonine polynomials, is
substituted into the expressions for the flux vectors and the diffusion
vectors. These expressions are:

Transport of momentum Py = 04 j inyifi av; (10)
2
Transport of kinetic energy gi = % ms f Vi Vsfy avy (11)
. . . T _ 1
Diffusion velocity Vi = o I VT dvy (12)
i

There sre also flux vectors that correspond to equation (10), transport of
momentum in the y and z directions. The nine components of the three momen-
tum flux vectors form the partial pressure tensor of the i1ith species. The
sum of these tensors over all species gives the pressure tensor for the multi-
component mixture. Similarly, the sum of the heat flux vector (eq. (11)) over
all species, gives the heat flux vector for the multicompconent mixture.

The integral in equation (12) and the sum of the integrals over species
of equations (10) and (11) can be regrouped in the familiar basic transport
coefficients. For example, a component of the pressure tensor of the mixture

P-pU - S (13)

is expressed as a product of the viscosity, 7, and the rate of shear tensor,
$. The diffusion velocity vector for species 1

2
v _(n D g. - L pTor
= nip>>:mJD13 &3 mmT P dr (1)

is expressed in terms of the multlcomponent diffusion coefficients, Dij: the

thermal diffusion coefficients, Dj, and a macroscopic gradient vector defined
as

oo 3t (- YRR (B) Ea L) @

In the last term in equation (15), the summation over species J includes
the 1th species. The coefficients Dij and Dy are analogous gquantities

10




describing the relative transfer of the different species in a multicomponent
gas. The main difference is that the driving potential for Dij is the con-
centration gradient, and the driving potential for Dg is the temperature
gradient.

The expression for the heat flux vector of a multicomponent mixture

g = M %%'*}Z 1h4¥5 - nKTEZIH%H'Dg 4 (16)

1

can be expressed as the sum of three components. In turn, each of these com-
ponents can be expressed as the product of an effective thermal conductivity
and the temperature gradient. The first component contains the translational
thermal conductivity, At, and is the only component explained by simple
kinetic theory (ref. 8). The second component contains the reactive thermal
conductivity, Mr, and derives its name because of the addition of the reaction
energy to the enthalpy (ref. 9). This mode of heat transfer can be described
in terms of a diffusion cycle. In the higher temperature region, an atom is
ionized, thereby gaining the energy of ionization. Since the derivative of
ion concentration with temperature is positive, the ions diffuse toward the
lower temperature region. In this region, the ion recombines with an elec-
tron, thereby releasing the energy of ionization (i.e., transport of energy).
The cycle 1s completed when the atom is forced by the atomic concentration gra-
dient to diffuse toward the higher temperature region where the ionization
process 1s repeated. For obvious reasons, the third component of the thermal
conductivity, Ag, 1s called the thermal diffusive component. Unfortunately,
no simple physical picture can describe this mode of heat transport.

There are some fundamental differences between the first component and
the last two components, Ay and Ag. Translational thermal conductivity is a
phenomencn which occurs for both a pure gas and a multicomponent mixture. The
last two components of thermal conductivity are observed only for a multicom-
ponent mixture. Another distinction is that the translational thermal con-
ductivity is completely described by binary collision effects (i.e., is a
basic transport coefficient) whereas the reactive and thermal diffusive com-
ponents of the thermal conductivity depend on the macroscopic guantity Bxi/ag
as well.

Infinite series of Sonine polynomials are used in evaluating the basic
transport coefficients for a multicomponent mixture, such as the components of
the viscosity, 74, the translational thermal conductivity, At, the multicom-
ponent diffusion coefficients, Djj, and the thermal diffusion coefficients,
DE; hence these coefficients are all expressed in terms of ratios of infinite
determinants. Since the convergence of these ratios is fairly rapid, it is
necessary to consider only the first few Sonine polynomials. The expressions
"first-order approximation" and "second-order approximation" stem from the
fact that either the first one (eq. (9a)) or the first two (egs. (9a) and
(9b)) in the series of Sonine polynomials have been used. These two expres-
sions will be used quite extensively in the following section.

11
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At a point in the derivation of the basic transport coefficients,
Chapman and Cowling (ref. 7) expressed the integrals containing Sonine poly-
nomials as a linear combination of the collision integrals

(1,8) _ opxr 717 2 y.2s+3 1

Qij = H;E_ exP('7ij)7ij (1 - cos® X)b db d74 3 (17)
o VYo

where 7;. 1s the dimensionless form of the initial relative speed, Vijs

between particles 1 and j with reduced mass Hij The relationship between

these quantities is
_ [P
715 = 2T ViJ (18)

The other variables in equation (17) are b, the impact parameter, and X,

the angle in the center of mass coordinate system between the relative veloc-
ity vectors before and after collision. ©8ince the gquantity X 1s an explicit
expression of the type of intermolecular force involved (ref. 8), it is obvi-
ous that the collision integrals are also expressions of the intermolecular
force effects in the Chapman-Enskog formulation.

Interparticle Potentials

This section will describe the source of the various potentials used in
this calculation. The transport coefficients of argon can be calculated with
a greater degree of confidence than most gases because of the availability of
molecular beam scattering data for all high-temperature interactions, with the
exception of those between two charged particles. These experimental scatter-
ing cross sections, in turn, are converted to interparticle potentials, o(r).
It should be emphasized that these potentials cannot be arbitrarily used at all
temperatures of interest. The criterion proposed by Amdur (ref. 16) for non-
Coulonbic interactions, is that the range of wvalidity of temperatures is
determined by the range of the potential energy corresponding to the measured
scattering. The expression relating the potential energy and temperature is

o(r) = kT (19)

In fact, the validity of equation (19) can be determined in the following
manner. TFor a given potential ¢ = ®(r), equation (19) can be solved for the
guantity r = 01ijs the equivalent hard sphere diameter. The quantity oij
then will be used in the simple kinetic theory for hard sphere molecules to
obtain approximate values of the viscosity and the translational thermal con-
ductivity.l Comparison of these approximate values with the corresponding
guantities calculated by the Chapman-Enskog formulation will determine the
regime of validity of equation (19). This approach is discussed in a subse-
quent section of this paper.

‘This approximation does not account for the thermal conductivity due to
thermsl diffusion and chemical reaction.

12




At temperatures below 2000° K, the only species present is neutral argon.
The molecular beam apparatus cannot supply a beam of neutral argon with suffi-
cient velocity resclution at beam velocities corresponding to this lower range
of temperatures. For this reason the Lennard-Jones potential

o) = (@) (] =

is used for atom-atom collisions where the constants, e/k = 124.0° K and

3.418 A, were determined from viscosity measurements ranging from 80° X to
1500O K (ref. 8). The collision integral corresponding to this form of the
potential is derived in reference 8, and the result is showr in figure 2(a).
For a pure substance the coefficients of viscosity and thermal conductivity
are given in reference 8 as

U e =
OIJ.:L
A=2 2 (22)

where c¢y 1s the specific heat at constant density for a single particle.

At temperatures between]ﬂBOOOandE%OOd)K equilibrium argon has not
undergone appreclable lonization, so that the transport coefficients can still
be specified by equations (21) and (22). For the upper part of this tempera-
ture range, the atom-atom potential is taken from the results of a molecular
beam experiment by Amdur and Mason (ref. 17). This potential is given as

9,,(r) = 3.120x107 "% (23)

where ¢(r) is the potential energy in ergs and r is the 1nterpart1cle dis-
tance in centimeters. The range of r extended from 2.18 to 2.69 A, which
corresponds to a temperature range of 21, 400° to 2, 600° K according to the
criterion of equation (19). The form of egquation (23) is the well-known
inverse-~power repulsive potential. The calculation of the corresponding col-
lision integral is described in reference 18, and the results of this calcula-
tion are shown in figure 2(a). A gap in the potential data exists between

1, 5OO and 2, 600° K. The dotted line in figure 2(a) shows the interpolated

»2)

value of Qll which was used.

For temperatures higher than 5OOOo K ionization effects become important.
The following collisions must be accounted for: atom-atom (subscript 11),
ion-ion (22), electron-electron (33), atom-ion (12), atom-electron (13), and
ion-electron (23). In addition to the "viscosity" type of collision integrals

13




of order (1,s) equal to (2,2), as defined by equation (17), the Chapman-Enskog

(1,s)

formulation requires the "diffusion" type of collision integrals, Q of

order (1,s) equal to (1,1), (1,2), and (1,3).

The collision integrals corresponding to the potential of equation (23)
are used for temperatures up to 3O,OOOo K although the range of the data
extends only to EI,MOOO K. The extrapclation can be justified because the
amount of atomic argon in this region approaches zero for pressures as high
as 100 atmospheres.

Two mechanisms are possible for atom-ion interactions. These are elastic
scattering and charge exchange. Mason, Vanderslice, and Yos pointed out in
l}l) 9(1,2)
1.3 2 > M2 ’
and le’ ) for high-temperature gases are governed by the charge exchange
mechanism. They also showed that the charge exchange effects cancelled out

reference 19 that "diffusion" type collision integrals (e.g., Q

2
for the "viscosity" type collision integral le’ . This predominance of
charge exchange seems to be substantiated by the experimental data of refer-
ence 20 where the charge-exchange cross section is larger than the elastic
cross section. Consequently, the "diffusion” type collision integrals

1 2
ng’l), Qgg’ ), and Ql;’s are derived from charge-exchange cross sections,

2,2
while the "viscosity" type collision integral ng’ is computed on the basis

of elastic collisions.

The atom-ion potential for elastic scattering is based on the results of
reference 21 and is given as

wlg(r) = 8.5h9XlO'6exp(—r/l.968XlO'9) (2k)

where mlz(r) is the potential in ergs and r the interpa;ticle distance in
centimeteérs. The range of r extended from 2.47 to 3.39 A, which corresponds
to a temperature range of 213,000° to 2,000° K. The calculation of the cor-
responding collision integral is described in reference 22, and the results

of this calculation are shown in figure 2(b).

The charge-exchange collision integrals are based on the experimental
charge cross sections given by Cloney, Mason, and Vanderslice in reference 21.
In this particular instance the collision integral can be expressed directly
in terms of cross-section data as a result of the following conclusion reached
by Mason, Vanderslice, and Yos in reference 19. The "diffusion” cross section,

Q(l)= &tjom(l - cos X)b db - (25)

approaches a value of twice the charge-exchange cross section at high tempera-
tures. For cross-section data that can be fitted to an expression of the form

Qs = (A -B log,o v)Z (26)

1k




‘where Q1o is the charge-exchange cross section (em®) for a velocity v
(cm/sec), the relation between the collision integrals and the constants A
and B 1is

Q(l)l) - kT

e ‘}39.8&32 - 17.85AB + 2A%) + (8.923B° - 24B)log,q %

+ 5B <1og10 %)2] (1)

q(%,2) gi_lk 1.148% - 18.13B + 24%) + (9.067B% - 24B)log, %
e 3]

a(1s9) [he 1287 - 18.358B + 24%) + (9.1768 -24B)log,, &
%Bz<l°gmﬁ } (29)

These expressions were derived by Dr. Gerrold Yos of the Avco Corporation, but
have not been published. For argon the constants A = 1.564x1077 cm and

B = 1.660x10°8% cm were obtained from reference 21. The resulting values of
the "diffusion" integrals are shown in figure 2(b).

The interaction between a free electron and a neutral atom can be
described approximately as the sum of three effects. The first effect is the
electrostatic interaction of the free electron with the nucleus and the unper-
turbed charge distribution of the orbital electrons acting as a whole. An
approximate orbital electron charge distribution obtained by Hartree (ref. 23)
is used in this paper. The second effect is the net polarization, or charge
displacement, of each orbital electron with respect to the nucleus, due to
the electrostatic force of the free electron. The third effect is the
exchange effect which is a manifestation of the Pauli exclusion principle for
orbital electrons of like spins These last two effects are discussed in
detail in reference 2. Kivel correlated the theoretical potential and exper-
imental data for elastic electron-atom scattering (ref. 25)-by assigning
constants of propertionality to the calculated polarization and exchange terms.
To obtain collision integrals of various orders, the resulting potential was
converted to the more familiar form

P, = 2-2L42x107*0p 79" 50 (30)
where @(r) is the potential in ergs and r the interparticle distance in
centimeters. The conversion of this type of potential to collision integrals
of various orders is described in reference 18. The resulting values are
shown in figure 2(c).

A percentage of atoms in a high-temperature equilibrium mixture exists
in electronic excited states, whereas atoms used in scattering measurements
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are in the ground or near-ground states. This poses the question of whether
the potentials obtained from scattering measurements can represent those for
the high temperature atoms. No generalizations can be made for the following
reasons: (l) The amount of excitation imparted to the impinging atom or ion
in the scattering experiments can vary because of the many available tech-
niques for obtaining these particles, and (2) the levels of the first few
excited states for these impinging particles and their corresponding selec-
tion rules (i.e., lifetimes of these states) vary from atom to atom.

The distribution of states for the argon particles used in the scattering
measurements can be deduced by examining the experimental technique, then cor-
relating it with the available excited states. The argon potentials in equa-
tions (23), (24), and (30) were obtained by essentially the same experimental
technique. The impinging ions were obtained by the following steps: (1) Ther-
mal electrons emanating from a filament were accelerated through a potential
greater than the first ionization potential of argon (15.76 ev), and (2) the
electrons were impacted against neutral argon atoms which are near room tem-
perature, thereby creating argon ions. These ions are, in turn, accelerated
and directed into the collision chamber. When the impinging particles were
required to be neutral argon atoms, then they were obtained by the additional
step of neutralization of the high velocity ions by charge exchange just
before the collision chamber.

The first excited state for singly ilonized argon is a relatively low one
(0.18 ev). The collision of the electrons with the argon atoms should cause
the formation of argon ions in both the ground and first excited states, with
the populations in proportion to their statistical weight (g; in eq. (2)).

In other words, two thirds of the impinging ions are in the ground state and
cne third of the ions are in the first excited state. Because the excited
state is metastable according to guantum-mechanical selection rules, the popu-
lation of states of the impinging ions will remain in the same proportion.

If 2 beam of neutral argon atoms is required for the scattering experi-
ment, then the distribution of states is gquite different because of the
absence of any low lying excited states for neutral argon. As a result, neu-
tralization by charge exchange causes a beam of neutral atoms to exist in the
ground state only.

The distribution of states in an equilibrium mixture of ions and atoms is
different. For example, the percentage of argon atoms and ions in excited
states is given in the following table.

Percent atoms Percent ions Percent ions
T, in excited in first in higher
°K state excited state excited state
300 0 0.5 0
5,000 0 2Lk.9 0
10,000 0 28.9 0
15,000 1.0 30.L4 0
20,000 12.6 31.0 .2
25,000 h3.7 31.3 .8
30,000 70.6 30.7 3.5
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The percentage of equilibrium atoms in excited states 1s not large below
20,000° XK. Above this temperature, the number of atoms as compared to ions 1s
small (appendix A). As a result, the potential of equations (23) and (30),
obtained from scattering of ground state atoms, is a good approximation
throughout the specified range of temperatures and pressures. The 33—1/3—
percent population of ions in the first excited state obtained in the scatter-
ing experiments is fortuitously close to the population found in a high-
temperature equilibrium mixture. Accordingly, the potential of equation (2k)
is a good approximation for the range of temperatures and pressures where ion-
atom interactions are important.

Ions do not exist in equilibrium mixtures at temperatures as low as
300° K. However, the population figure at this temperature serves to illus-
trate a point. Had the transition from the first excited state to the ground
state been allowed, then the population of ions in the first excited state
for the scattering measurements would have been 0.5 percent rather than 33-1/3
percent. This would have caused a large error in the potential of equation(Em.

Interactions between charged particles are described by the shielded
Coulomb potential

0.2(x) = 0ga®) = Ppar) = Z op(- ) (31)

The quantity h 1is the Debye shielding distance and is defined” as

1/2

XT
h = 2
8¢rn3e2 (32)

for singly ionized gases, where e 1s the electron charge. The physical
significance of h can be described as follows. In a plasma, a given ion
will have an excess of negatively charged particles in its vicinity, and vice
versa, as a result of the attractive-repulsive nature of Coulomb forces. Con-
sequently, the potential is exponentially attenuated by the screening effect
of the electrons so that it decreases from e/r in the immediate vicinity of
the given particle to negligible values at distances large compared to h.
Therefore, h may be viewed as a correlation distance proportional to the
effective range of a given charged particle. The collision integrals corre-
sponding to the shielded Coulomb potential were derived by Liboff in refer-
ence 27. The values of these collision integrals are shown in figures E(d)
through 2(f).

2Spitzer (ref. 26) defines the Debye shielding distance as

h = (kT/hﬂnseZ)l/Z. However, equation (32) is used in this paper since all
of the charge-charge collision integrals are based on this definition.
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Expressions for Second-Order Basic Transport Coefficients

The derivation of the second-order expressions for the basic transport
coefficients was outlined by Hirschfelder, Curtiss, and Bird in reference 8.
However, second-order expressions were given only for the translational ther-
mal conductivity and the thermal diffusion coefficients. Hirschfelder et al.
expressed the viscosity and multicomponent diffusion coefficients in terms of
the first-order approximation (i.e., only the first term in the series expan-
sion of Sonine polynomials), since the first approximation is the predominant
contribution for neutral gases. This order of approximation may not be suffi-
ciently accurate for a partially ilonized gas. Since a set of basic transport
coef'ficients 1s required for a standard in this paper, the accuracies of the
coefficients in this set must be consistent. Consequently, the second-order
expressions3 for Ag, DE, N, and Dijj will be given in the next few
paragraphs.

The first component of thermal conductivity in equation (16), At, is the
only component predicted by collision effects alone. This component is
described by Muckenfuss and Curtiss (ref. 30) in terms of a hypothetical iso-
lated gaseous system, as "the thermal conductivity of a multicomponent system
in which the diffusion forces vanish. If an initially uniform gas mixture is
placed in a uniform temperature gradient, a thermal conductivity measurement,
before any thermal diffusion takes place, would give At. In the course of
time, however, concentration gradients appear and the diffusion forces build
up until the diffusion velocities vanish (the stationary state)." The second-
order expression for this component is given in reference 8 as

3The selection of the second-order expressions should not give the conno-
tation that it is the most accurate formulation of the Chapman-Enskog approach.
An analysis by Landshoff (refs. 28 and 29) for an electron gas (infinitely
heavy atoms) shows that third-order At are 18 percent higher than second-
order values, whereas fourth-order N\t are higher than third-order values by
less than 1 percent.
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Note that the determinants in both the numerator and denominator contain
subdeterminants whose elements are designated by the superscripts 00, 01, 10,
and 11. These superscripts correspond to the combination of Sonine polynom-
ials used in a particular subdeterminant. For example, the first Sonine poly-
nomial (m = O) and the second Sonine polynomial (m = 1) are implicit in the
Ol subdeterminant. The elements q?? are related to the elements Q?? by
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The elements Q?? are defined rather than q?? since the elements Q??
will also be used in the calculation of the thermal diffusion coefficient.
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45 =0 (35a)
500 -Bnsms(ngmg + nyms) g%,l) ) 8nyn ymym s (1 1) (350)
13 \ﬁﬁg—g(mi + mj) +J ./mimj(mi + my) Pk
vhere k # i # 3.
=xOL ningm ] (1,2) - 209 (l 1)
. 82 (mg + m; )2 [Qij 2 (362)
JFL T
3/2  pina; (1,2) (1 1)
~01 mi Ryt s ) i
oG 2 [ 165
mi J
~ <01
Q%g = Q44 (372)
=10 _ mJ oL
95y = @y % (37b)
<11, o (2,2) ningms  fs (1,1)  _ o (3, o (1,3)
G T 8 ) o [ (O T - g ¥ uai;
JF T
nanmlmJ (2’2)
+ 16 E: ) i3 (38a)
i J
3/2
11 n4Ty J (2, 55 o (%,1) 2 (1,2) 2 (1,3)
Qij <: > o e )3 [EmJQlJ m m504 5 + SmJQij 039 4
i J
(38b)

For these elements Qij = 031, but Qi3 # Q1.
tially ionized argon are shown in figure 3.

The values for \i(2) for par-

The last component of the thermal conductivity in equation (16) contains
the thermal diffusion coefficilent, Dg. The second-order expression is defined
as
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The second-order expression for the viscosity is
1
n(2) =3 MZanJO(E) (10)
J
where bjO(E) is a Sonine expansion coefficient of the second order. The sec-
ond subscript in bjo(2) denotes the first Sonine polynomial (m = 0). How-

ever, this does not mean that the effect of the second Sonine polynomial
(m = 1) nas been dropped out, for the values of bjo(2) are derived from a set
of linear equations containing the first and second Sonine polynomials.
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The derivation of the Sonine expansion coefficients, bjo(2), are included *
in appendix C, since they were not derived in reference 8. These coefficients
are
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‘The elements in the 01, 10, and 11 subdeterminants are identical with those
in equations (36), (37), and (38). The elements in the 00 subdeterminant are

~ ,1 2,2
(m:L + m; )
J#l
N n{nims 2,2 1,1)
iy - D (3057 ()] (12v)

2

The values of n(2) for partially ionized argon are shown in figure k.

The second component of the thermal conductivity in equation (16) con-
tains the multicomponent diffusion coefficients, D;:. The second-order

i
expression is defined as J
ony - [2KT (J,1)
D;j(2) = Eﬁﬁg m; Cio (2) (43)
where cgg’l)(z) is a Sonine expansion coefficient of the second order. The
derivation of cgg’l)(2) is shown in appendix C. These coefficients are
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The elements in the four subdeterminants are identical with those in equa-
tions (35) to (38). The values of the various second-order multicomponent
diffusion coefficients are shown in figure 5 for a pressure of 1 atmosphere.

The coefficient of electrical conductivity, o, can be derived from the
expression for the current density, j, which is defined as

J = npeVy - neeVe = o (L5)
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where E is an externally applied electric field. Substituting equation (1L)
into (M5) and retaining only those terms containing the electric field, we
have

o2

2
n
o =5 (mngDre + mynyDay) (46)

The calculated values of the electrical conductivity based on the second-order
values of the multicomponent diffusion coefficients (eq. (43)) are shown in
figure 6.

DISCUSSION OF RESULTS AND COMPARTISONS

Basic Transport Coefficients for Partially Ionized Gases

In existing calculations of the basic transport coefficients for high-
temperature reactive gases, where the number of species is much greater than
for argon (refs. 1 to 6), the second-order expressions have not been used
because of computational difficulties. For example, an equilibrium mixture
of COs and No may have as many as eight species simultaneocusly. In this case
the calculations for n(2), Dij(2)> M (2), and Dg(2) would necessitate the
use of the 16th order determinant. As a result, approximate methods were sub-
stituted and have been proven experimentally (refs. 4, 10, and 12) to be
fairly good up to temperatures where dissociation occurs. However, the valid-
ity of these approximations at temperatures where ionization occurs, is ques-
tionable, 1In this section the second-order basic transport coefficients of
argon will be compared with those calculated by these approximate methods.

Any disparities which may appear for argon should be indicative of the dis-
parities which would appear for other partially ionized gases.

The existing approximations assume that the first-order expressions for
the components of viscosity and the multicomponent diffusion coefficients are
sufficiently accurate. In other words, the approximation is equivalent to
dropping the 01, 10, and 11 subdeterminants in equations (41) and (4L4). This
assumption was justified by comparisons of calculated first-order values with
experimental data (ref. 8), where the intermolecular forces were small, the
masses of the different speciles were comparsble, and the temperatures were
relatively low (a few hundred degrees Kelvin above room temperature) .

Viscosity.- First-order values of the viscosity of partially ionized
argon were calculated, then compared with the second-order values of equa-
tion (QO). The first-order approximation is gulite good. The greatest differ-
ence between the first- and second-order values is only 1 percent and occurs
at conditions of complete ionization. An examination of the magnitudes of the
Sonine expansion coefficients, bj,, shows the reason why no large changes
should be expected. The first-order values of the electron expansion coeffi-
cient, beg(l), are larger than the second-order values by 12 to 15 percent,
whereas the first-order values for the atom and ion, bAo(l) and bAfo(l): are
lower than the corresponding second-order values by only 1 percent. This
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comparison indicates that second-order effects are important only for
electrons. However, Pao and bA+o are roughly three orders of magnitude
larger than bego because of the minute electron mass. Conseguently, for vis-
cosity (i.e., transport of momentum), the second-order effects are negligible.

Multicomponent diffusion coefficients.- First-order wvalues of the multi-
component diffusion coefficients were calculated, then compared with the
gsecond-order values of equation (MS) in figure 5. For the coefficients
Dp_p+; Dpt+_p, and Dp_e, there is only a few percent difference between the
first- and second-order values. However, the second-order coefficlents
DA+_e(2), Do_p(2), and Dg_p+(2) are larger than the corresponding first-
order coefficients by 25 percent at 50-percent ionization and by 45 percent at
complete ionization. Several factors are responsible for the discrepancy
between Dj3(1) and Dij(2). According to Hirschfelder et al. in reference 8
"the use of one term alone does not describe the dependence of the diffusion
coefficient on concentration; the slight concentration-dependence is brought
out when the first two terms in the Sonine polynomial are used." More impor-
tant may be the neglect of the 11 subdeterminant which completely drops out
the electron-electron interactions.® The elements in the determinants for
Dp+_e(2), De.p(2), and De_p+(2) show that the electron-electron interaction
becomes important because of the conmbined effects of large intermolecular
force and small mass.

These discrepancies have important implications in the calculation of the
last two components of the thermal conductivity (eq. (16)). If the assumption
is made that the first-order multicomponent diffusion coefficients are suffi-
ciently accurate, then they can be expressed in terms of the binary
coefficients

_3(mi + my) kT
815(1) = 16nm;m Q<l;l) = 951(1) (¥0)
13

This expression of Dij(l) in terms of §;3(1) can result in considerable
simplifications in the expressions for the concentration gradients and diffu-
sion velocities. However, a 25 to 45 percent error in certain of the first
order diffusion coefficients could mean a much greater error in some of the
concentration gradients and diffusion velocities. For example, the first com-
ponent of the velocity in equation (1L) can be a difference as well as a sum
of the quantities mjDijdj because

zdy = 0 (48)

Consequently, for partially or fully ionized gases, the second-order diffusion
coefficients should be used for accurate predictions of Ay and Ag.

“Unlike the elements in the viscosity determinants (egs. (38a) and (L2a))
which contain like interactions in both the 00 and 11 subdeterminants, the
elements in the multicomponent diffusion determinents (egs. (35a) and (38a))
contain like interactions in the 11 subdeterminant only.
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. The significance of the quantity Dij is not given for a mixture with
more than two components. An examination of the first component of the diffu-
sion velocity (eq. (14)) indicates that Di;; may be defined as a measure of
the diffusion of species 1 because of the interaction of species 1 with
species Jj. However, an examination of the terms for the Sonine expansion

coefficients c.J’l)(eq. (L4)) shows that interactions between all species
affect the value of Djs. Consequently, Dij may be described more aptly as
a measure of the diffusion of species 1 with respect to species § for all
interactions, including interactions between like particles (e.g., electron-
electron). It may be instructive to compare the various Ds J(2) in figure 5
with this description in mind. The values of Dp.p+(2) and DA+_A(2) are iden-
tical within five decimal places for conditions ranging from less than 1 per-
cent ionization to almost full ionilzation. Even the values of the binary
diffusion coefficient, £4j, are within 1 percent of these values. The values
of Dg_p(2) and Dg_p+(2) differ by only 1 percent at most for all conditions.
These characteristics indicate that the atom and the ion diffuse with respect
to each other, independent of any electron effects. This is possible despite
the large Coulomb forces between ions and electrons, because of the much
greater mass of the atom and ilon. Figure 5 also shows that DA_e(E) is at
least an order of magnitude larger than DAf_e(E) at ilonization levels
greater than 25 percent. This indicates that although the electron does not
affect ion or atom diffusion, its own diffusion is affected more by the ion
than the atom because of the large Coulombic forces.

Translational thermal conductivity.- In the Chapman-Enskog formulation,
the first-order approximations (i.e., neglect of the 01, 10, and 11 subdeter-
minants) for the translational thermal conductivity, At, and the thermal dif-
fusion coefficients, DE, are both identically zero. Muckenfuss and Curtiss
(ref. 30) searched for a simplification of the second-order At. As a first
step they assumed that first-order milticomponent diffusion coefficients were
sufficiently accurate for nonreactive monatomic gases, and could be expressed
in terms of binary diffusion coefficients. As a result, the heat flux vector
of equation (16) could be expressed as

T kKT = =
= - — - 03 )4~
a4 Moo 3 anhlv + Zz rle(l) V EJ) (49)
where
T T
BV 4 b < Di D) > 0
}\oo - ?\‘t gnz z Agj_j(l) n;ms nij (5 )
1 J

In other words, the thermal diffusive component, Ay, was split into two parts,
one part proportional to the temperature gradient and the other proportional
to the differences in diffusion velocities. The first part of Aq was then
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added to the translational thermal conductivity, A, and the sum® defined as
No- Muckenfuss and Curtiss reasoned that since thermal diffusive effects are
small for nonreactive gases near room temperature, then A, could be replaced
by a modification of the determinant form of equation (33) for At. This
modification consisted in discarding the 00, Ol, and 10 subdeterminants.
Numerical calculations were made for two ternary mixtures, He-A-Xe and Ne-A-Kr
at 3110 K. Muckenfuss and Curtiss concluded that thermal diffusion effects
were proportional to the mass disparity between the interacting species. For
example, the difference between At and Ao (eq. (50)) was 2 percent for the
He-A-Xe mixture (Myxe/Mge ~ 33) but only 0.5 percent for the Ne-A-Kr mixture
(Mgr/Mye ~ 4). The calculations also showed that if the elements in the 00,
01, and 10 subdeterminants in equation (33) were discarded a difference of
only 2 percent would be incurred for the He-A-Xe mixture and an O.5-percent
error for the Ne-A-Kr mixtures. Consequently, Muckenfuss and Curtiss stated
that equation (50) "is found to be identical with an ‘approximate' formula for
the thermal conductivity derived on the assumption that the thermal diffusion
coefficients are negligibly small." As a result, existing approximations
(refs. 1 to 6) have made use of the following simplifications: (1) The quan-
tities Di for all species are assumed to be zero, and (2) the approximation
for the translational thermal conductivity is assumed to be equal to the
approximations for A,. That is, they both can be derived from the second-
order expression A4(2) (eq. (33)), if the 00, 01, and 10 subdeterminants are
discarded. These simplifications have been used for a partially ionized gas
where the mass disparity is extremely large (Matom/Melectron ~ 104).

The wvalidity of the At approximation for a partially ionized gas can be
determined from figure 7. This figure compares the second-order Ny and the
approximate At at pressures of 10-4, lO'l, and 10° atmospheres. The second
order values are larger by 30 percent at 50-percent lonization and larger by
50 percent at complete ionization at the lower pressures. The smaller dispar-
ity at 100 atmospheres can be attributed to an increase in the Debye shielding
effect (i.e., a greater departure from the Coulomb potential). A similar cal-
culation shows that the second-order values are higher by almost 100 percent
for a mixture of doubly ionized atoms and electrons. The source of the
discrepancies can be seen by an inspection of the magnitudes of the elements
in the kt(2) determinants. The determinant shown below is the denominator of
equation (33) for a temperature of 15,000O K and a pressure of 1074 atmosphere
(99-percent ionization).
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SThis separation of the thermal diffusive component, A3, into two parts is
not a valid operation for a partially ionized gas because of the discrepancy
between the first- and second-order values of the multicomponent coefficients.
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The values of the elements have been rounded off to the nearest power of 10,
then divided through to give a value of unity to the largest values. When
these values were substituted into the expanded terms of equation (33), the
elements in the Ol and 10 subdeterminants were found to contribute very little
to the final value of At, whereas the elements in the 00 subdeterminant were
contained in the dominant terms. This comparison shows that the complete
second-order expression for At (eq. (33)) must be used.

Another approximation for the translational thermal conductivity of a
partially ionized gas has been proposed by Fay (ref. 31). His expression for
At is

M o= Mgy + Ap (51)

where %tl is the translational thermal conductivity of pure atomic argon,
calculated from equations (22) and (23), and Ap 1is the thermal conductivity
of a singly ionized argon plasma as specified by Spitzer in reference 26. The
ANt values calculated by equation (51) are compared with those from the second-
order theory (eq. (33)) in figure 8. Comparisons were made at the lower pres-
sures (104 and 107! atm). It can be seen that equation (51) is a poor
approximation at 1074 atmosphere, and a fair approximation at 1071 atmosphere.
The large discrepancy at 10°% atmosphere can be attributed to the fact that
%tl is not dependent upon density, whereas Ap increases rapidly with den-
sity. A more reasonable expression for Ag

Moo= (1 - e)ng, + elp (52)

can be used for degrees of ionization, €, greater than 0.5. Neither equa-
tion (51) nor (52) is a good approximation in the region of moderate degrees
of ionization (0.2 < ¢ < 0.5).

Thermal diffusion coefficients.- The expressions for the last two compo-
nents of the thermal conductivity, Ay and A\g, in equations (14) and (16) con-
tain the thermal diffusion coefficients, D§. Existing approximations have
assumed that D% is identically zero. Typical wvalues of the second-order
thermal diffusion coefficients for the argon atom, ion, and electrons are
shown in figure 9. In the expressions for the diffusive velocity (eq. (14))
and the heat flux vector (eq. (16)), Di always occur in combination with the
number density nj, and the mass, mj, in the denominator. Although the elec-
tron thermal diffusion coefficient, Dz, is at most two orders of magnitude
smaller than those for the atom and ion, the electron mass is four orders of
magnitude smaller. Consequently, thermal diffusive effects can be attributed
almost entirely to the electron term. This does not mean, however, that only
the electron interactions are important. The role of heavy particle diffusion
will be discussed later. 1In its present form, the second-order theory cannot
predict accurately the concentration gradients of electrons. However, an
order of magnitude calculation using a range of expected values for dXe/dr
shows that the contribution of electron thermal diffusion to A, and Ag can
be of the same order of magnitude as At.
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The question arises as to whether DT for partially ionized argon can be
used for other partially ionized gases. Inspectlon of the magnitudes of the
determinant elements in equation (39) shows that the value of Dg is mainly
determined by the values of the collision integrals for the electron -electron,
electron-ion, ion-ion, and electron-atom interactions. Also, De is not sen-
sitive to changes in the remaining 1nteractlons All partially ionized gases

have essentially the same value of QA* for a given electron density and
temperature for the following reasons: 1) All electron-ion interactions are
described by the shielded Coulomb potentlal (eq. (31)), and (2) mass effects
are determined by the reduced masses of bilnary systems which are essentially
the same for all ion-electron systems.

The electron-atom collision integrals for all gases do not have the same

values, as evidenced by the comparison of ﬁAiél for hydrogen, nitrogen, and
oxygen in reference 6. It would be exceedingly difficult to assess the rela-
tive effects of electron-ion and electron-atom interaction by inspection of
the elements in the determinant expression for DE. However, this can be done
simply by changing the constants in the electron-argon atom potential

(eq. (30)), then comparing the resulting values of DT Two sets of changes
in Pp were made to include extreme values of Qp_o which are found for
other a%oms of interest (e g., ref. 6). The first resulted in an increase in
the Qp-o integrals by a factor of two, and the second in a decrease by a
factor of six at 5, 000° K. As to be expected, dissimilarities showed up for
conditions of low degrees of ionization. For example, the differences in Dg
were as high as 50 percent at l-percent ionization. However, it is believed
that the thermal diffusive effects are relatlvely small in this region because
of the rapid drop in the magnitude of De with decreasing temperature

(fig. 9). At 25-percent ionization the maximum difference drops to approxi-
mately 2 percent, and at 50-percent ionization the difference is less than

1 percent. These considerations show that the thermal diffusion of electrons
is dictated by the ilon-electron interaction rather than the atom-electron
interaction. These considerations also show that the Dg values for par-
tially ionized argon can be used as a good approximation for other partially
ionized gases. These Dg values are presented in figure 10 as a function of
electron density and temperature.

Another interesting conclusion can be reached by an inspection of the
various DE in figure 9. It can be seen that the atom and ion thermal dif-
fusion coefficients are within 1 percent of each other in magnitude from a few
percent ionization up to extremely high degrees of ionization. As the num-
ber of atoms approaches zero, Dy+ decreases in value, changes sign, then
approaches the value of D near 100-percent ionization. These variations
imply that the diffusion motion of both the atom and ion are essentially inde-
pendent of that for the electron, up to large degrees of ionization (approxi-
mately 95 percent). The diffusive motion of the electrons, in turn, is
dictated by the ion rather than the atom because of the much greater magnitude
of the Coulombic forces. The same conclusion was reached from an examination
of the multicomponent diffusion coefficients, Dl (2) These variations point
out that for a partially ionized gas, we can use some of the concepts of
plasma physics directly, but other concepts must be modified to account for
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. the strong atom-ion momentum coupling. The electrical conductivity is an
example in point. The variations have extremely important implications for
other situations. Heavy particle diffusion also would dominate where the
heavier particles were ions of a single type diffusing with respect to each
other due to temperature and/or concentration gradients, or ions of a given
charge diffusing with respect to ions of a different charge. This point
should be kept in mind for the subsequent discussion of the electrical conduc-
tivity of a partially ionized gas and the basic transport coefficients of a
fully ionized gas.

Electrical conductivity.- The existing approximations for calculating the
electrical conductivity of a partially ionized gas (refs. 6, 32, and 33) are
based on simple kinetic theory which uses the concepts of an electron mean
free path. In references 6 and 32, the Coulombic cross sections are empiri-
cally modified so that the resulting values of the electrical conductivity, o,
agree with Spitzer's values (ref. 26) at the limit of complete ionization.

The approximation by Lin, Resler, and Kantrowitz (ref. 33) is a typical
example. They used an unrealistic model which adds the resistivity of an
electron gas (ref. 26) and the resistivity of a Lorentzian gas.® In other
words, the atom-atom, atom-ion, and ion-ion interactions were completely
ignored. Their values are shown in figure 11. Also shown are the experi-
mental values of the electrical conductivity of argon obtained by Lin, Resler,
and Kantrowitz (ref. 33) in a series of shock-tube experiments. The experi-
mental values are divided into two groups, those where equilibrium was reached
during the available time interval (T > lO,OOOO K) and those where the conduc-
tivity was still rising, at the end of the available time interval

(6,000° < T < 10,000° K). For the latter group the experimental points repre-
sent the maximum conductivity attained. Experimental points below 6,OOOO X
were not considered to be accurate because of the relatively large amount of
electrons originating from impurity atoms.

The experimental values were lower than those predicted in reference 33
by a factor of 25 at 6,500O K and by a factor of 7 at 8,000O K. At tempera-
tures above lO,OOOO K, the agreement is fairly good. Lin et al. attributed
the disparity at the lower degrees of ionization to insufficient testing time
to reach equilibrium, and inaccurate values of the electron-atom cross sec-
tion. It is a matter of conjecture, however, as to whether these two effects
could explain such large disparities.

In contrast, the electrical conductivity values calculated by the second-
order Chapman-Enskog formulation (eq. (L6)) are also shown in figure 11. The
agreement is much better in the region of low ionization where the predicted
values were higher than Lin's experimental values by approximately 50 percent.
At temperatures above 10,000° K, the agreecement is good, indicating the valid-
ity of the rigorous Chapman-Enskog formulation for calculating the electrical
conductivity of partially ionized geses at high degrees of ionization.

BA Ioorentzian gas is defined as a binary gas where the mass of one type
of particle is very small compared with the mass of the other, and where the
interaction between the light particles is negligible compared with the inter-
action between unlike particles.
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Indirectly, the agreement is also an indication of this validity for
calculating the translational thermal conductivity of partially ionized gases
because the determinant elements for both these conductivities are identical
except for a multiplicative constant.

Cross sections.- In addition to the approximations described in the pre-
ceding paragraphs, Hansen made several other simplifications in reference 1,
which affected the values of the viscosity and translational thermal conduc-
tivity. The simplification which produced the greatest changes consisted of
relating the interparticle potential directly to the collision cross section”

—(l’l) —(2:2) . . .

Qij and Qij . The purpose of the simplification was to bypass the
extremely complex steps which lead from the interparticle potential to the
collision variables X, 7ij, and b, and finally to the collision integral
(eq. (17)). Hansen's simplification consisted of taking the effective colli-
sion diameter, o;4, as the interparticle distance where the potential is equal
to an empirically determined value. The effective collision cross section is

then defined as

= 2
Qij = ﬁcij(r) (53)
R (22
For the viscosity cross section Q- (i.e., the transfer of momentum and
energy), the value of the potential is taken as #kT, and for the diffusion

1,1

3 ), the value is taken as Z2KkT.

cross section 0
Figure 12 shows comparisons between the cross sections obtained by the

empirical method and the Chapman-Enskog cross sections. The results are pre-

sented in the form of a ratio of the empirical cross section to the Chapman-

Enskog cross section. The value of the inverse power, n, used in the various

interparticle potentials is shown in the upper margin. The rigorous and empir-

ical cross sections are within a few percent of each other for atom-atom

(r-8-33) and atom-ion (approximately r~1%:%4) interactions. For atom-electron

2,2
interactions (r~3-%%), the viscosity cross sections Q&_é ) agree within a few
1,1

rercent, but the diffusion cross section ﬁ(_’ ) for the empirical method is

13 percent lower. The empirical method is completely inadequate for obtaining

Coulombic type cross sections (eq. (31)). For this case the effective inverse

power is much smaller (equal to or more than 1 because of the shielding

"The collision cross sections, ﬁij; are related to the collision inte-
grals, lij, by

Of

ij KT i

(2,1) _ <éﬁ“ij>l/20(l:l)

2l

1/2
() _ (e o)
1J 2KkT 1J
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‘correction), and the strength of the potential is much greater. The result is
that the empirical viscosity cross section is 20 percent lower at a pressure
of 10% atmosphere, and 80 percent lower at a pressure of 107% atmosphere. The
disparity for the diffusion cross sections is even greater. For example, the
empirical diffusion cross section is 95 percent lower at a pressure of

1074 atmosphere.

To determine whether the discrepancies for the Coulombic cross sections
stem from the increased magnitude of the potential or its range (i.e., n), the
rigorous and empirical cross sections were calculated for a hypothetical
series of inverse-power potentials,

Py5(r) = K™ (54)

The constant of proportionality, K, was adjusted to give all the potentials
the same magnitude at a given intermolecular distance. The results are shown
ags the solid lines in figure 12. A comparison of the cross sections for this
hypothetical series with those for the argon cross sections indicates that the
shortcomings of the empirical method are independent of the strength of the
potential (i.e., the constant of proportionality), but are strongly dependent
upon the "hardness" of the assumed model. In other words, the empirical
method fails for low inverse power (i.e., "squishy" models). As a result, the
empirical method for calculating viscosity cross sections should not be used
for inverse powers less than 2, and that for calculating diffusion cross sec-
tions should not be used for inverse powers less than 5.

These discrepancies in the empirical cross sections are reflected in
large errors in the viscosity and translational thermal conductivity. The
magnitude of these errors can be seen by substituting the empirical cross sec-
tions into the 00 subdeterminant for n and the 11 subdeterminant for At,
then comparing corresponding values 17 and Ay based on the Chapman-Enskog
cross sections (figs. 7 and 13). The 7 values based on the empirical cross
sections are 5 percent smaller for neutral argon, but larger by varying
amounts at appreciable degrees of ionization. For complete ionization, where
the values of 1 are relatively small, the discrepancies range from 250 per-
cent at the lowest pressure to 4O percent at the highest pressure. The WAt
values for both sets of cross sections are approximately the same at zero
ionization. As the degree of ionization increases, the Nt values based on
the empirical cross sections are greater. For example, the discrepancy at a
pressure of 1074 atmosphere for completely ionized argon is 140 percent. Com-
paring the discrepancies in the basic transport coefficilents (figs. 7 and 13)
with the discrepancies in the cross sections (fig. 12) points out two facts.
First, the diffusive cross sections do not have an appreciable effect on 1
and Nt. Second, the relatively good agreement at the highest pressure can be
attributed to the fact that the increased Debye shielding effect has made the
colliding particles "harder."
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Basic Transport Coefficients for Fully Ionized Gases

For a fully ionized gas (i.e., a mixture of equal numbers of electrons
and singly ionized atoms) all binary interactions are described by the
shielded Coulomb potential (eq. (31)). Using equation (31) is equivalent to
assuming a finite upper limit on the impact parameter in the ccllision inte-
gral (eq. (17)). In other words, a limit on the range of the Coulomb force
between two particles is established. It was shown in reference 27 that this
upper limit corresponds approximately to the Debye shielding length, h,
defined in equation (32). However, a comparison of h with the average par-
ticle distance, n‘l/3, in the following table shows that h is larger than
n~1/3 for the range of temperatures and pressures in this paper.

P, T,

%EE EE hfn—l/B
107% 15,000 h. L2
1072 18,000 2.32
1 30,000 1.51

10% 50,000 .99

This physical situation is not in accord with the basic assumption of binary
collisions and, at first appearance, indicates that the Boltzmann equation is
not valid for gases with an appreciable degree of ionization. This situation
prompted Spitzer and his coworkers (refs. 34 and 35) to derive a theory which
describes transport phenomena (specifically electrical and translational
thermal conductivity) due to many long-range similtanecus Coulombic interac-
tions with a given particle. The time rate of change of the electron and ion
distribution functions caused by particle interactions for the Boltzmann equa-
tion (i.e., the right side of eq. (3)) is replaced by the Fokker-Planck
expression. Equation (3) then becomes

af afi o Yot

at + v - 7§E + . JP (£ £5' - £y )glJb do de dv;
3 3

ZZ S — (o <ome o, 2>)

i 83—X<fj <Avx,i>> (55)
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The first term on the right side of equation (55) differs from the right
side of equation (4) only in that the upper limit of integration is taken as
by, the distance where the deflection angle is x/2, rather than . This
initial term accounts for close encounters. Spitzer assumed that the cumula-
tive effects of the first term (large angle deflections) are small compared
to the second term (small angle deflections). Consequently, the first term
on the right side of equation (55) was neglected. The second term accounts
for distant encounters which are defined as those with impact parameters
between by and h. The quantity'<:ANX,j:> represents the mean value of the
velocity change in particle 1, in the x, y, or z direction, in unit time,
resulting from distant encounters with particles of type Jj. Distant
encounters are defined as those with impact parameters between by and h.
Spitzer derived expressions for the variocus <av> retaining only those terms
proportional to 1In A, where

7

i/2

h 3 /k3T3>
A= 2 = 6
bo EZiZjeB \ T (56)

Neglecting nondominant terms introduces an error of the order of 1/in A.

As a result of Spitzer's analysis, the Boltzmann equation was considered
inappropriate for calculating transport properties of a fully ionized gas for
a long period of time. Recently Gross (ref. 36), Grad (ref. 37), Koga
(ref. 38), and others re-examined the mathematical implications of the
Boltzmann and Fokker-Planck equations. They concluded that the Boltzmann
equation was valid after all. Grad stated that

". . . The critical point here is that, although the two physi-
cal pictures are entirely different, their mathematical descriptions
are identical! The net effect of many successive independent small
impulsges is the same as many simultaneous independent small impulses,
provided only that the means and variances of the two impulse distri-
butions are the same (actually, the entire probability distributions
were taken to be the same). Thus we conclude, without setting pencil
to paper, that the Fokker-Planck equation, which is an immediate con-
sequence of the simultaneous grazing impulse model, must yield results
identical with those obtained from the Boltzmann equation, provided
that an appropriate grazing collision approximation is made and the
same cut-off is used in the latter computation.

"For example, the Fokker-Planck equation itself can be obtained
by a simple formal manipulation of the Boltzmann collision term; all
the collision analysis is classical and need not be repeated. Further-
more, all the transport coefficients which emerge from the Fokker-
Zmamke@mﬁon(hmhﬂﬂg}ma;mmmwﬁvmy,ﬂwmmldﬁfmﬁﬁim the
perpendicular as well as parallel electrical resistivity, all evaluated
for an arbitrary magnetic field) are given by well known collision
integrals evaluated for the Boltzmann equation with coulomb potential
and need not be recomputed . . .
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"To improve this result to next order . . . requires inclusion
of large angle deflections (which is a triviality if we use the
Boltzmann rather than the Fokker-Planck equation) . . ."

In the following sections the second-order Chapman-Enskog values of the
electrical and translaticnal thermal conductivity will be compared with
Spitzer's values.

The values of Ay calculated by the Chapman-Enskog approach should be
compared with Spitzer's value of the thermal conductivity before any charge
separation effects are applied. The equivalence of these two quantities can
be shown by a comparison of the heat flux and current density expressions for
the two approaches. The current density is defined as

J = nyely - neele (57)

Substituting equation (lh) into (57) and neglecting the term containing
D%/ml, we have the Chapman-Enskog expression for the current density

j = Ky (mgD DeT)E [K < D e D BXI> DE} or (58)
Jj = + m + m —_— - —-— )+ = =
o 1 Te TVel/2 2 evTe ST T el 3T mgl al

where the K's are products of thermodynamic quantities, such as number den-

sities, pressure, etc. The corresponding Spitzer expression from reference 26
is

S

i=gErass (59)

The functional dependence of the heat flux vector® of equation (16) can be
expressed as

a = -Motal 2—2‘:— = At g—g - N\ ‘2% (60)
where
Mg = Ma(Dre, Ders Doy dxp/dT, 3x/dT, E) (61)

While the functional dependence of Agq on Jxy/dT, Oxe/dT, Di, and E is
explicit (egs. (15) and (16)), the Dye and Dey dependence is implicit in the
calculation of Oxy/OT and Oxe/OT. The corresponding Spitzer expression from
reference 26 is

8The reactive thermal conductivity is zero for a binary mixture of elec-

trons and ions of a single type, because of the absence of any chemical
reactions.
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a4 = "M %3— - BE (62)

where the coefficients in equations (59) and (62) are related to the charge
separation correction, €, by

e =1 - Ban (63)
M

Spitzer's final expression for the total thermal conductivity is then
Motal = M - Ban (64)

Comparing equation (58) with (59), equation (60) with (64), and noting the
functional dependence of equalion (61) shows that the charge separation
effects in the Chapman-Enskog formilation are contained in the thermal diffu-
sive compcnent of the thermal conductivity.

In principle, the Chapman-Enskog values of At, m, and ¢ should be the
same as the Spitzer values because of the equivalence of the Boltzmann, and
Fokker-Planck equations. However, some basic differences arise in going from
the basic equations to the expressions for the transport coefficients. These
differences are summarized in table I. It can be seen that the Chapman-Enskog
formilation is more complete in two respects. First, close encounters (i.e.,
large-angle deflections) are accounted for. This is reflected in the modes of
velocity description. For example, Spitzer uses the concept of the diffusion
coefficient, <:Vk,i:>: which 1s valid only for small angle deflections,
whereas Chapman and Enskog express the velocity in terms of Sonine polynomials,
which is wvalid for both large and small angle deflections. It is also
reflected in the lower limit of integration for the impact parameter. Chapman
and FEnskog use zero, whereas both Spitzer and Braginskii (ref. 39) use the
quantity by, the impact parameter corresponding to a deflection angle of ﬂ/E.
The second advantage of the Chapman-Enskog formulation is that the ion-ion
interaction,® as well as the effect of this interaction on ion-electron and
electron-electron interactions are also accounted for. The discussion in the
preceding section on partislly ionized gases pointed out that the effect of
heavy particle diffusion could become quite important.

The values of the translational thermal conductivity, A4, electrical con-
ductivity, and viscosity, mn, for the various approaches are given in table I.
The Chapman-Enskog values of the viscosity are almost identical with the
Braginskii values at conditions of high A. As the large-angle encounters
become more important (i.e., lower values of A) the Chapman-Enskog values
become slightly larger than the Braginskii values. This agreement is not
unexpected, since the Sonine polynomial expansion was used in both approaches.
The relatively large difference (16 percent) at the smallest A may be attrib-
uted to the greater importance of large-angle deflections (impact parameters
between O and bp). Koga presented a detailed discussion of this point in ref-
erence 38. The Chapman-Enskog values of the electrical conductivity agree

PSpitzer did not derive an expression for the viscosity as the predomi-
nate interaction for this coefficient, the ion-ion interaction, was neglected.
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quite well with the Spitzer values, especially at large A. At the condition
of smallest A, the Chapman-Enskog value is 7 percent larger. Again, this
small disparity may be attributed to large-angle deflections.

This excellent agreement between the Chapman-Enskog and Spitzer values of
the electrical conductivity brings up an apparent paradox. The comparison for
the translational thermal conductivity shows that the Chapman-Enskog values
are lower by a factor of 3. A comparison of the elements in the Chapman-
Enskog determinant for the electrical conductivity (eq. (44)) with those for
the translational thermal conductivity (eq. (33)) shows the source of the dis-
parity. The relation between the two sets of elements is given in equa-
tion (3L4). It is seen that the elements for the translational thermal conduc-
tivity are proportional to those for the electrical conductivity, where the
constant of proportionality contains the factor ,[mimj. Consequently, if it
is assumed that the electron-electron interactions are of equal importance for
the two conductivities, then the electron-ion interaction is 100 times as
important in the translational conductivity, and the ion-ion interaction is
10,000 times as important. Yet, this last interaction is precisely the one
Spitzer ignored and the second is one he incompletely described.

It should be pointed out that both the Chapman-Enskog and Spitzer
approaches are accurate to within a factor l/Zn”A (ref. 37). The uncertainty
is attributed to the neglect of nondominant terms. Although there have been
several theories which account for these nondominant terms (refs. 40 to L2),
the development of these theories has not progressed to the point where they
will yield numerical values for the various transport coefficients.

Reactive and Thermal Diffusive Components of Thermal Conductivity

The calculation of the last two components of thermal conductivity, Ar
and Ag, requires two sets of variables. The first set can be described as
microscople in viewpoint and the second as macroscopic. The first set con-
sists of the basic transport coefficients described in the preceding sections.
These coefficients are defined as the ones prescribed only by collision pro-
cesses. Although the expressions for calculating these coefficients are rela-
tively complex, at least their solution is presented in closed form.

The second set of variables are the concentration gradients for the wvari-
ous species. Because of their macroscopic nature, the concentration gradients
are affected if any forces, X(r), external or internal, enter the general
Boltzmann equation (eq. (3)). For a partially or fully ionized gas, the
existence of a difference in the ion and electron concentration gradients
induces a charge separation field, Eg, given by Poisson's equation

V . Bs = [np(1) - ne(1)le (65)
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where ni(l)lo are the nonequilibrium number densities. The force dependence
means that the gradients can no longer be presented in closed form, as was the
case Tor dissociating gases (ref. 9) where no force term existed. If the
coupling between the concentration gradients and the charge separation field
were properly accounted for in the solution of the Boltzmann equation, the
complexity of the calculation of ANy and A3 would be significantly
increased.® The existing calculation of the gradients and the extent to
which charge separation is accounted for are discussed in this section.

An expression for the reactive thermal conductivity of a dissociating gas
was derived by Butler and Brokaw (ref. 9). They made no claims that it could
be used for a partially ionized gas. Nevertheless, this expression is being
used for a partially ionized gas (refs. 1 to 6), and in some cases for a doubly
ionized gas (refs. L and 6). Butler and Brokaw solved for the concentration
gradients by using two expressions. The first expression is obtained by tak-
ing the gradient of both sides of the expression for the equilibrium constant,
Kp

= .IVT (x1p) (66)
1=1

where the aj's are the stoichiometric coefficients for the reaction. The
result of the differentiation is a relation between the concentration gradi-
ents and known thermodynamic gquantities

J in KP ST _zai 5xi
mipor ye 2 (67)

Equation (67) is very general and is valid for partially or fully ionized
gases, provided the reaction rates are sufficiently rapid (i.e., local chemi-
cal equilibrium).

The second expression states that the net flux of atoms of each kind,
either as free atoms or combined in molecules, is zero for steady-state condi-
tlons. This condition can be expressed as

‘?.invi“ij =0 3=1,2, . . ., (68)

10The nonequilibrium number densities, ni(l), in equation (65) differ
fundamentally from the equilibrium values used throughout the preceding por-
tions of this paper. The values of the equilibrium, or zero order, number
densities differ from the nonequilibrium values by a very small amount and
consequently could be used where the difference of ny and ne 1is not a factor.
However, the equilibrium values cannot be used in equation (65); otherwise a
zero value of Eg would result.

1lMeador in a private communication points out that a rigorous develop-
ment of the Chapman-Enskog formulation would necessitate a dependence of the
Sonine polynomial expansion on the charge separation field.
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where aij 1s the integer denoting the number of atoms of type j contained
in the ith molecule. For the water gas reaction HO + CO © CO» + Hp, the
diffusion velocities are related as follows:

XHZOYHgO + tz\zHE =0 (H atoms) (692)
Xco_v_co + XCO;002 =0 (C atoms) (6913)
xp1,0¥H,.0 * *codco + Zgo Yoo, = O (O atoms) (69c)

At this point Butler and Brokaw simplified the expression for the diffu-
sive velocities (egs. (14) and (15)) as follows: (1) The first-order expres-
sions for the multicomponent diffusion coefficients were used as they were
considered sufficiently accurate; (2) thermal diffusion effects were assumed
to be negligible; and (3) macroscopic force fields were assumed to be absent.
These three assumptions are valid for a dissoclating gas. The final expres-
sion for Ay results from these simplifications and the combining of equa-
tions (67) and (68). The expression is given as

SZnAK 2
P
. 5T>

This expression should be re-examined for a partially or fully ionized
gas. For partially ionized gases, there are defects in equation (70) which
should be obvious in light of the discussion in previous sections. These
defects lie in the three simplifying assumptions which were made for a dis-
soclating gas. Second-order multicomponent diffusion coefficients should have
been used and thermal diffusion effects should have been included in the
expression for the diffusion velocities. ©Since the coefficients Dy (2 and
D?(E) can be calculated, they can be incorporated into the calculatlon of A
and Ag without undue difficulty. However, the solution would not be in the
form of a single eguation, but rather a set of simultaneous equations.

(70)

The greatest defect of equation (70) is its complete neglect of the
charge separation field. To determine whether the effect of the charge separa-
ation field can be included in the framework of the Chapman-Enskog formulation,
the functional dependence of the field will be examined in this and subsequent
baragraphs. Ambipolar diffusion of charged particles due to inhomogeneities
(i.e., temperature or concentration gradients) results in a charge separation
field. This phenomenon has been discussed quite thoroughly by Allis in refer-
ence 43 for the case of a fully ionized gas. For the case where the over-all
dimensions of the plasma are greater than either the Debye length or the mean
free path, Allis makes the assumption of proportionality,

L SFL _ 1 e (71)
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which results in the expression for the charge separation field

mev
Eg = (Dg - Dg) — 2 . %g? (72)

The quantity De 1s the field free ambipolar diffusion coefficient for the
electron. For a particle of species 1, Diy is defined as

2
Vi

TN ) (73)

where the collision frequency, vei, depends upon the particle velocity, vj.
The quantity Dg 1s the effective ambipolar diffusion coefficient for the
electron and is an explicit function of the electrical conductivity, o, the
collision frequencies vc¢; and veg, and, more important, a function of the

space charge density, (nI(l) - ne(1))e.

Once the functional dependence of the charge separation field for a fully
ionized gas is known, two questions arise: First, what modifications must be
made for partially ionized gases. Second, are the expressions in.equations(72)
and (73) compatible with the Chapman-Enskog formulation. The answer to the
first question is that the effects of neutral particles are automatically
accounted for if one uses the electrical conductivity (eq. (46)) and collision
freguencies for partially lonized gases. The answer to the second question is
that equations (72) and (73) are not compatible because the ambipolar diffu-
sion coefficients and the collision frequencies are both velocity dependent.
As a result, the expression for Eg is also velocity dependent. If Eg 1is
to be included in the total force, Xi, in the Boltzmann equation (eq. (3)),
then an extensive modification of the entire Chapman-Enskog formulation would
be required. Specifically, this would necessitate a dependence of the Sonine
polynomial expansion on the charge separation field. However, if the gross
assumption is made that the ambipolar diffusion coefficients and collision
frequencies are averaged over all velocities (i.e., the particle velocity can
be approximated by the mean kinetic velocity, ¥), then the ambipolar diffusion
coefficient can be expressed as

L kT
D]_ - mchi(T) (7)4')

As a result, the charge separation force would satisfy the requirement in the
Chapman-Enskog formuilation that any component of the force term is independent
of pesition and time but not of wvelocity.

The system of linear eguations, which, in prineciple, should yield solu-
tions for the concentration gradients in the form Jxp/dT, Oxp/OT, and BxegaT,
and the charge separation field, Eg, may now be written (eas. (75), (76), (77),
and (78)). These equations stem from equations (67), (68), and (72). Equa-
tion (78) indicates that Eg 1is a function of the difference in the first-
order number densities, nI(l) and ne(l), as are the last two components of the
thermal conductivity, Ay and A\g. Consequently, for a specified temperature
the value of the total thermal conductivity would not be a constant, as is the
case for the translational thermal conductivity, but would vary in the
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direction of the temperature (i.e., concentration) gradient. This would mean
that the total thermal conductivity would be a function of the temperature
(i.e., concentration) gradient as well as the temperature,t® and would greatly
increase the complexity of the solution of Ay and Ag. Until this difficulty
is resolved, accurate predictions of the last two components of the thermal
conductivity for a partially ionized gas will not be possible.

ox ox ox din K
L A, 1T, 1 e 120D
Txa v TR o T Re om T<T aT > (75)
n2 [ o XT 0 Ese’> o X ng Ege > ﬁi
o "R\ TP Sr/or/ T Mehe\Tr Y D S1/57 T m,T
_ _n2 D Oxy D OxXe L e Eee D% (76)
T T o ™A sy tReMe \5p YT Srja/) Tgr VT

n2 Oxy np Ege

Xeo
e [mIDAI E 8T/5;'> t oD \Fp T aT/a;ﬂ " m,T

T
_ p2 oxp éfl _ng Eee >} Da
= - -p— lijDeA —ﬁ + mIDeI BT D aT/ax + meT (77)

Ese o e2 j! 1 } 1 aXe
= kT 1 _— - - = c 8
aT/a-I_‘ meV ce {<mIVCI + mevce> [ + mev Cec (nI ne) mevce Xe aT (7 )

lgIt was pointed out in the introduction that in Maecker's experiment
(ref. 10) there may be either an experimentally induced error or an unpre-
dicted phenomenon, because the experimental values of the total thermal con-
ductivity at the given temperature increase as the arc current is increased.

A possible cause is the change in the temperature gradient due to the change
in arc current.
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CONCLUDING REMARKS

Existing methods for calculating transport coefficients of a partially
ionized gas are based on the Chapman-Enskog expansion of the Boltzmann equa-
tion. However, significant simplifications in the theory were made for the
case of a nonreactive mixture of monatomic gases near room temperature. These
simplifications were carried over to the case of dissociating and ionizing
gases without justification. Comparison of the values of the basic transport
coefficients calculated by the existing methods with those calculated by the
rigorous second-order Chapman-Enskog formulation shows relatively large dis-
parities for partially ionized gases. For example, the existing methods
underestimated the translational thermal conductivity and certain multicompo-
nent diffusion coefficients by 25 to 60 percent at high degrees of ionization,
and overestimated the electrical conductivity by an order of magnitude at low
degrees of ionization. In addition, the existing methods completely over-
looked thermal diffusive effects. A comparison of the electrical conductivity
values, calculated by the rigorous second-order Chapman-Enskog formulation with
experimental values, indicates the validity of the approach for calculating
the translational thermal conductivity, as well as the electrical conductiv-
ity, at high degrees of ionization.

The thermal diffusion coefficients for the atom, ion, and electron were
calculated in this paper. A comparison of these coefficients shows that the
thermal diffusion effects can be attributed almost entirely to the electron
term, and that the values of Dg calculated for partially ionized argon can
be used for other partially ionized gases to a gocd degree of accuracy. Also,
a comparison of these coefficients and the multicomponent diffusion coeffi-
cients shows that the diffusive motions of the ion and atom are strongly
coupled and are almost independent of the diffusive motion of the electron up
to high degrees of ionization. This behavior can be attributed to the
extremely small mass of the electron. It should be pointed out that this
dominance of heavy particle diffusion also would exist if the heavier parti-
cles were ions of a single type diffusing with respect to each other due to
temperature and/or concentration gradients, or ions of a given charge diffus-
ing with respect to ions of a different charge.

The calculations in this paper were carried out to the point of complete
ionization (i.e., a mixture of equal numbers of singly ionized argon atoms
and electrons). The values of translational thermal conductivity and elec-
trical conductivity calculated by the second-order Chapman-Enskog formulation
(binary collisions) were compared with those calculated by Spitzer approach
(simltaneous collisions). The two sets of electrical conductivity values
compare favorably (discrepancies of less than 4 percent for most cases). How-
ever, the Chapman-Enskog values of the translational thermal conductivity are
lower by a factor of three. This large disparity can be attributed to
Spitzer's neglect of ion-ion interactions and their effect on electron-ion
interactions, which are more important by orders of magnitude in the transla-
tional thermal conductivity as compared to the electrical conductivity.
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In addition to accurate values of the basic transport coefficients
(microscopic viewpoint), accurate values of the atom, ion, and electron con-
centration gradients (macroscopic viewpoint) are needed for the calculation of
the last two components of the thermal conductivity, Ay and Ng. Existing cal-
culations of the concentration gradients utilize approximate basic transport
coefficients which are in considerable error. The existing methods also neg-
lect the charge-separation field, E., which may profoundly affect the concen-
tration gradients of ilons and electrons. The functional dependence of the
charge-separation field has been examined. The examination indicates that Eg
is a function of the difference in the first-order number densities of ions
and electrons. Consequently, for a specified temperature, the value of the
total thermal conductivity would not be a constant, but would vary in the
direction of the temperature gradient. This would greatly increase the com-
plexity of the solution of Ay and Ag. Until the difficulty is resolved,
accurate predictions of the last two components of the thermal conductivity
for a partially ionized gas will not be possible.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 17, 1964
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APPENDIX A

THERMODYNAMIC PROPERTIES OF PARTTALLY IONIZED ARGON

The calculation of the thermodynamic properties of an equilibrium gas is
well established. The particular approach used in this paper is admittedly an
approximate one., Refinements such as the lowering of the ionization potential
and virial corrections to the equation of state have been omitted because of
the added complexity.

Only the pertinent equations for the thermodynamic gquantities will be
given in the following section. The development of the equations and the
assumptions used can be found in references 1 and 4. All thermodynamic func-
tions can be expressed in terms of the partition function. This function for
a given mode of energy is defined as

Q = Tg, exp(-e1/kT) (A1)
1

where €5 1is the ith quantum level, and g; 1s the degeneracy or the total
number of states which have different internal configurations but have the
same energy level. The partition function of equation (2) reduces co

3/2

Qt = 2’;121‘> %(T)s/‘2 (a2)

for the translational mode (ref. k). The functions for the various particles
are

in QP(A) = %Zn T+ 1.8662 + Zn[ggiexp(—ei/kT)] (A3a)

n Qp(A") = 21n T + 1.8662 + in[Tg, exp(-c3/xT)] (A3b)
Jd

n Qp(e‘) = %Zn T + 14.234 (A3c)

The atomic energy levels and the first ionization potential, as derived from
spectroscopic analyses, are taken from reference 45. The cutoff terms are
arbitrarily taken where the outer electron energy initially reaches the
excited state corresponding to the fifth principle quantum number (ref. 46).

The equilibrium constant is the basis for the determination of the equi-

librium mol fractions x(A), x(Af), and x(e~). The pressure equilibrium con-
stant for single ionization expressed in terms of the partition functions is
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T + -

InKp = - o5+ 1 Qp(a7) + 1n Qpler) - in qp(a) (k)
where the ionization potential, EI/k, has the value 182,850° K (ref. U45).

Thermodynamic functions determined separately for each of the species
A, AY, and e~ are combined with the equilibrium mol fractions and their cor-
responding derivatives to yleld the thermodynamic properties of the equilib-
rium mixture. Generally, in engineering calculations the energy per fixed
mass of gas is needed rather than the energy per mol. This quantity can be
obtained by multiplying E/RT, the energy per mol, by Z, the total number of
mols per mol of initially neutral argon (i.e., a fixed mass of 39.94L grams).
The expression for the dimensionless energy is given as

A B
== Zin = (5)
i

where E; 1s the energy per mol for component 1i. The dimensionless enthalpy
per initial mol of argon becomes

— ==+ 7 (A6)

The compressibility, Z, dimensionless energy, ZE/RT, and dimensionless
enthalpy, ZH/RT, which have been calculated from the preceding equations, are
shovn in figures 14, 15, and 16. The entropy per initial mol of argon is
obtained from the separate entropies of the various species by the swmation

S
73 1o P
= = Z <in szi n x4 - In %\) (A7)
i i

where ©p, 1is the reference pressure of the standard state, in this case
1 atmosphere, and SiO/R is the entropy of component 1 at 1 atmosphere.
The entropy values are shown in figure 17.

The specific heat at constant density per initial mol of undissociated

nitrogen i1s given by
ZiCy ci Ei Zx4
— =7 . == —_{ —— 8
R §X1R+TERT 3T Jo (48)
i i

1

where c¢; is the derivative of energy for component i, that is, OE;/dT. The
corresponding equation for the specific heat at constant pressure is
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Zc cq E; 7x s
3 .

1

The specific heats calculated from equations (A8) and (49) are presented in
figures 18 and 19.

The speed of sound can be calculated from the specific heat values deter-
mined above. The dimensionless speed-of-sound parameter, a?p/p, was derived
in reference 1 in terms of variables already calculated

Lt (1/2)(32/3T)p (410)
P 1+ (7/2)(9z/9T)p

This dimensionless speed-of -sound parameter is shown in figure 20 as a func-
tion of temperature.

The calculation of these thermodynamic properties is based on the use of
the ideal gas law to describe the partial pressure for each component (i.e.,
atoms, ions, and electrons). Strictly speaking, the use of this law implies
that particles are vanishingly small, and that intermolecular forces are non-
existent. The actual existence of intermolecular forces means some deviation
from the ideal gas law. It can be seen in reference 47 that the ideal gas
approximation is accurate to within 1 percent for the range where argon exists
in the atomic form (T < 5,OOOO K), except for small regions of pressures
(p > 10 atm).

At temperatures greater than S,OOOO K the amount of ionized species
becomes apprecidble, and the use of the ideal gas law must be examined in the
light of the screened Coulomb potential of equation (31). Duclos used this
potential in reference 48 to calculate the contribution of electrostatic
energy to the thermodynamic properties of a fully ionized gas. The Debye
pressure correction to the ideal gas eguation of state was found to be

2
e ng
Apg = - e (A11)

For the case of a fully ionized gas (i.e., a mixture of singly ionized
argon atoms and electrons) the quantity h 1s the Debye shielding distance as
defined in equation (32). The fractional pressure correction is then

Apg Jenng 8

_ (A12)
ideal 3(kT)3/2

1%

For a given temperature the pressure correction varies as the square root of
the electron density, ng. The correction for a partially ionized gas can be
approximated by multiplying the right side of equation (A12) by the percentage
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ionization. This approximation is based on the fact that the range and
magnitude of the Coulomb force is an order of magnitude greater than those for
interaction between A-A, A—A+, and A-e”.

The variation of electron density with temperature and pressure is shown
in figure 21, along with lines of constant percentage ionization. A line
representing conditions where the quantity APd/Pideal is equal to 1 percent
for a fully ionized gas is also superimposed upon figure 21. Above this line
the correction is greater than 1 percent. It can be seen that the shielded
Coulomb potential results in less than 1 percent departure over the largest
part of the range covered in this report. At the point of highest electron
concentration (T = 30,000° K, p = 10% atm) where the ionization is approxi-
mately 50 percent, the equation of state correction is of the order of
I percent.




. APPENDIX B

SHOCK-WAVE VARIABLES FOR PARTTALLY IONIZED ARGON

For a range of temperatures and pressures where ideal gas behavior is no
longer valid, the shock-wave relations cannot be given analytically in terms
of initial conditions, but must be obtained by iteration. These iterative
solutions must satisfy certain conservation relations (ref. 49) which are
expressed in terms of state variables in front of and behind shock waves. The
specific approach taken in this paper is outlined in the following paragraphs.

The solution for the incident shock-wave quantities begins with the spec-
ifications of an initial temperature, T,, pressure, p,, and pressure ratio
across the incident shock, Poi. The temperature behind the incident shock,
Ts, is determined by a single iteration.

The iteration proceeds as follows. Assumption of a T, for a given Doy
allows the compressibility Zo and enthalpy ZgHZ/RTg to be calculated by the
methods described earlier. These guantities are then used to express the
enthalpy ratio and density ratio across the incident shock

(2Ho/RTo)To
(Z1H1/RT1)T1

h21 = (Bl)

T1Z,

P21 = Poy - (B2)

Iteration on T, will lead to the proper choice of To such that the result-

ing state variables and enthalpy will satisfy the basic shock relation

2hiP,
Dy

(o1 - 1) = (ppy - 1)(Pyp + 1) (B3)

where the quantity
hipy  (Z1H1/RT:)

= (BL)
pl Zl
The derivation of the basic shock relation can be found on page 21 of
reference 49.
The basic shock relation also will be used for the solution of the

reflected shock wave in the form

2haop

=<= (hs2 - 1) = (paz - 1)(Pzs + 1) (B5)
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The solution of the reflected shock wave will require an additional relation -
for a double iteration, as neither pg nor Tg can be specified initially.
This relation can be derived from an expression on page 22 of reference L9,

as follows

2

Voo = (uy - up)” = % (ppy, - D(1-040) (B6)

where 7vs 1s the velocity of the gas behind the shock wave relative to a
stationary reference system (e.g., shock-tube wall), and the u's are the
velocities with reference to the incident shock wave. The form of the equa-
tion is also valid for the reflected shock.

(2 - wa)® = 22 (pgy - 1)(L - P2s) (57)

where the w's are the velocities relative to the reflected shock wave. The
boundary conditions require that

Vo + W3 (B8)

5
)

(ul - u2)2 (B9)

"

and the state variables behind incident and reflected shocks may be related
by conmbining equations (B6) and (BT)

2 (py - V(L - 0y2) = 52 (pgz - DL - Ppa) (B10)

This relation plus the basic shock relation (eq. (B5)) must be simultaneously
satisfied by the state variables and enthalpies.

The initial step in the double iteration is to assume a value of pg
and iterate on Ts, until the basic shock-wave equation (eq. (B5)) is satis-
fied. The quantities hsp, Pzs, and hgpg/pz, required for this first itera-
tion, can be determined from equations (B1l), (B2),and (B4) by replacing the
subscript 1 by 2, and the subscript 2 by 3. The resulting Ts 1s not neces-
sarily the correct Tz for the problem, but just the T3 which should cor-
respond to the assumed P5- The next step 1s to take the state variables
previously calculated for Ts and p,, and the state variables for the Tz and
P, which satisfy equation (BS), and apply them to calculate both sides of
equation (B10). If equation (B1O) is not satisfied, then a new value of Ps
mist be assumed and the above process repeated in its entirety.

The iterative solutions for the pressure, density, temperature, and
enthalpy are presented in figure 22 for the incident shock and figure 23 for
the reflected shock. The solutions are given for an initial temperature of
2930 K and five initial pressures varying from 1 to 1074 atmosphere. The
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degree of ionization, in the form of the compressibility, Z, is also presented
in figures 22 and 23. Rather than using P,,; as the independent variable, it
is more convenient to use the shock-wave Mach number Mg, which is more easily
determined in a shock tube experiment. This gquantity is defined as the speed

of the incident shock wave divided by the speed of sound in undisturbed argon,
and is related to the pressure ratio p,; by

P -1
Mg = 21

72(1 - P,

)1/2 (B11)

where 7 1is the ratio of specific heats, and is equal to 5/3 for the initial
conditions assumed in this paper. The state variables are presented as the
ratio of the calculated real-gas variable to that for the ideal gas (super-
script*). This dimensioniess form was chosen to maintain the same degree of
accuracy on the graphs throughout the range of shock-wave Mach numbers. Note
that the displacements of the curves are about proportional to the logarithm
of the initial pressure ©p,;, so it is possible to interpolate between the
curves with reasonable accuracy. The expressions for the ideal gas variables
behind incident and reflected shocks are

Incident Shock

2
. 2 - (7 -1)

Do, = (B12a)
21 1
(r + 1)M®
p¥ = (B12pb)
2Ly -1+ 2
.p*
" 21
T2y = B2y = 5% - (Bize)
21
Reflected Shock
(¢ + 2)p5, - 1
* 21
o = T of (B13a)
21
(1 + aps,)
pzz - _____—_23— (B13b)
(o + Pas)
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o .
Tae = hap = —2
32 32 o (B13c)
32
where
Y + 1
C(/ =
— (B134)
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APPENDIX C

SECOND-ORDER EXPRESSIONS FOR VISCOSITY AND MULTICOMPONENT
DIFFUSION COEFFICIENTS

The mathematical formalism required for the second-order viscosity and
multicomponent diffusion coefficients is described in detail in reference 8.
Unfortunately, no explicit expressions for the second-order values of 17 and

are given since the first-order values were considered sufficiently accu-
ra%e for a neutral gas. Consequently, a brief outline of the derivation of
n(2) and D;;(2) is given in this appendix. The physical connotations of the
variables w1ll nct be discussed, as they can be found in reference 8.

-+~ ~
The second-crder visccsity coe

icient is expressed in terms of the
Sonine expansion coefficients, bjo: as

]
—
no
~
I}

%‘ kTZn3b 30(2) (c1)

The Sonine expansion coeff1c1en;s, in turn, are the solutions of a set of
linear equations, with the Ql and H 13 (as defined in egs. (35) to (38) and
(42)) as constant coefficients! These equations are

) Z G g (2) = BRI (m = 0,1) (c2)

J m'=o
00 00 . (h,X)
where Qi' is replaced by Hij when m =0 and m' = 0. The variable Rim
for both the wviscosity and multicomponent diffusion coefficients is defined as
(h,k) (h k) (m) .2
Rin = P Hy)Sy (WD) vy (c3)
where the term inside the parenthesis denotes the trace of the t?nso§ product
h,k h,k
of R; ) and W; for the viscosity coefficient. The temnsor R;
deflned as
h,k
<13§ %) = -of (WyW; - lw’;‘g_) (Ck)
.- viscosity + 3
and the tensor Wi 1is defined as
L 2
. = W.W. - =VWsU C
(El)viscosity =1 3 1= (c5)
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The Maxwellilan distribution, foi’ is given in equation (2). The reduced

velocity W; 1s defined as
{ml
Ej_ 2kT \ll (C6 )

The gquantity Eiwi is the dyadic and U 1s the unit tensor. The Sonine poly-
nomial of order n = 5/2 is required for the viscosity coefficient. This
particular polynomial satisfies the orthogonality relation

b/\fol é?é(w JVE Qv = 1504 <%T> o (c7)

Combining equations (C3), (Cl), and (C5) we have

h,k
<ﬁ§m )> = l*JFw £, ss/z(wz)dv (c8)
V1sc051ty

The integration can be performed through the use of spherical coordinates

dV; = VZ sin ¢ a6 dp av (c9)

Combining equations (C7), (C8), and (C9) we have

h,k
<R§o’) =% [ Witoy aU; = -5ng (m =0) (c10)
viscosity
(b, k)
<#i1 > ) o= ML/ﬂW o35 5/2(W2 =0 (m=1) (c11)
viscosity

Combining equation (C2) with (C10) and (Cll) we have a set of six simultane-
ous equations

OO

Hi b o(2) + Hizbzo(g) + ﬁ?gbso(E) + Qgib11(2) + Q§§b21(2) + @i;b31(2) ony

for (m = 0; 1 = 1,2,3) (c12)

Qiiblo( ) + Q12b20(2) + Q?_gbs ( ) + Qll ll( ) + ng 21( ) + Qi;b3]_(2> =

[
O

for (m=1; i = 1,2,3) (c13)
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where the quantities 13’ Qgi, QlJ’ and QlJ are defined in equations (42),
(36), (37), and (38). The application of Cramer's rule to the six simultane-

ous equations (egs. (C12) and (C13)) results in the determinant expression,
equation (41).

The second-order multicomponent diffusion coefficients are derived in the
same manner and are expressed in terms of the Sonine expansion coefficients as

Dy;(2) = gim:; EjflT EJ’ )(2) (c1k)

cgj’l) are
io

In this case, the set of linear equations for

1
> Z Qij Si”(e) = - [Rﬁlh k} o (m = 0,1) (c15)
e diffusion

J m'=o
. o s - (h,X) _
For the multicomponent diffusion coefficients the tensor Ei is defined as
(h,k) 1
[1; = = fo, (Bip - Bix)V; (c16)
diffusion 1
and the tensor Wy 1is defined as
. = - l
(Ei)diffusion 0 = ng Yi (c17)

The Sonine polynomial of order n = 3/2 is required for the multicomponent
diffusion coefficients. This particular polynomial satisfies the orthogonal-
ity relation

(m)  ov.2 _ 3nikT

ffol o/m (w VE Ay, - o (c18)
Combining equations (C3), (C16), and (C17) we have
(n, k):] 1 [ f (m), ,

= /__ P VoSa n(WD)AV: (81, - s cl

[ o Jgirfusion  PANZTJ TR o/2(W3) s (Bgy - Bsp0) (c19)

Combining equations (C9), (C18), and (C19), we have
(h,k)} KT

R; = 3 [ (851, - B4y) (m = 0) (c20)

[ © diffusion 2my in 1
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=0 (m = 1) (ca1)

}diffusion

Combining equation (C1L) with (C20) and (C2l) we have a set of six simultane-

ous equations

h,k N h,k
1202 1y 4 5% (g

o1 (h,k)

11%12 (2) +

.10 (h,k)

.10 (h,k) 10,005 ()

i1%10 (2) +

oo (h,k)

+ QiaCs0  (2)

~§;C£?’k)(2) + Q?;Cé?k)(g) =-3 ngT (811 - Bix)
i
(m=0;1=1,2,3) (ce2)
SRS
e o) 4 @2l @) - a2 - o
(m=1; 1 =1,2,3)  (ce3)

00 .01 ,10 11
where the quentities Gjj, Qij: Qij: and Qij are defined in equations (35)

to (38).

The application of Cramer's rule to the six simultaneous equations

(eas. (C22) and (C23)) results in the determinant expression, equation (hk).
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Figure 7.- Comparison of second-order method with "11%" and Hansen approximations
for calculating the translational thermal conductivity.

7




Translational thermal conductivity, A+, erg/°K cm sec

78

5
SxI07 = | NENIE |

0l k| 5 9 99
Fraction ionized
/
41— Second - order approximation /
----- “11" approximation /

— — "11" approximation theory /
+ Hansen cross sections

3 p=10""atm /

5 10 5 20 25 x10°

Temperature, T, °K

() p = 107" atm

Figure 7.- Continued.




2.2x10°

20

®

o

S

o

Translational thermal conductivity, \,erg/°K cm sec
Ny

| | | S N | | | 1
Ol A 5 9
Fraction ionized

Second-order approximation

w . .
——————— 11" approximation

w . .
—————— I|" approximation +

Hansen cross sections

p=10

1 1 i | {

10 15 20 25 30 35

Temperature, T, ° K
2
(¢) p = 10 atm

Figure 7.- Concluded.

40

45

50x10%

79



*£4TATIONPUOD TBWISYS

TeUOT}BTSURIY 9Y3 Surgelnores JoF uolsewrxoxdde Aed UYJTA POYISUW JSPJIO-PUOISS JO uosTIedwo) - g oIndTg

5-0T = & (®)
Mo ‘L ‘@unjpasdwa |
cOIXGl ol
I I
d 1
i [
X+ X ———~—
6 ! .
ey ——
uoyjowixoiddp J8pI0_puUodIDg —— —

7 wio Ol = d

7 pozZIudl U000

»01X8

08s WO Y, /bus “\( ‘A}INJONPUOD  |DULIBY}  |DUOI}D|SUDI )

80




*papnIouc) -°g 2an3T o

81

£-0T = d ()

Yo ‘L ‘8unjpiadwa]

ol S
0l x G2 107 Gl _ 0
i T T
—
=]
2
=
=
=3
=1
— 1 =
@
3
=
(2]
S
’ 2
’ S
\\ wib _-o_ =d M
x
d, h .uY
d A 8
ey Np-n — — 3
uoljpwixosddp J9pi0-pudddG A
3
wn
o
()
pazIuo! UOHIDIY
6 14 I 10
R _ J oixe




¢0IX 08

"danjesedwe) JO UOTIOUNF B SB UOSIB I0J SQUSTOTIIO0O UOTSNIJTP TEUISUL -6 SInST.

Mo ‘1 ‘ 94njpiadwa}

82 92 v (44 0¢ 8l 91 bi 2l Ol 8 9

r

mm_m.

I I | L T | | | l T i

//
/
’d
\
IERE NI

/
N

8
o
Lisaig g

uw~_co_co:oo¢ /l\
mmm. N_mm. m\ﬂm. m_m. 6 L n_.w m

ol

-0l

Q ‘Jul01}4800 UOISNY}IP |DWIBYS BN|DA 84N|0SqY

1

o

29s wo/wb

82




"9aIngBISde) JO UOTYOUNF B SB SJUSTOTIIOOD UOTSNIITP TRULSYY UOIGOSTH - *OT 2an3t1yg

n-Eu.c:

60! g0 L0 90! g0l #10! g0l 20! T
MITT T T T T T T T NI T T N T T T TN T T T T T o0
| E Y

000'9 I
—— “mlo_
0002 _
000's _
-
000's =
B // 0000l —2-0l
( 000'02 -
N W
~—— — Mo 000°0€ —9-01
— —
| | | _ | =

99s-wo/wb * 1a

83




| 1 | | | 1
Fraction ionized .000l

AL

I

T T T TTITI
—

-~
0]

O]

£
(8]
~
(7]
(o}
L
=
b -
> [ II 0]
z E | S
S 0
'g — I o)
c
S I |
°© ()
._g i I’
:‘3 | — — = Lin, et al (ref. 33)
w o h Y Chapman-Enskog,
- ,' 1) second order
u |
N |
- |
| o
i §
lo-? I
0 4 8 12 16x 10°

Temperature behind incident shock, Tp, °K

Figure 11.- Comparison of experimental and theoretical electrical conductivities
for argon.

8L




*sTeT3US%0d JSMOC. SSJISAUT STNOTJIBA JOJ SUOTRODS SSOID JO OTLBY - 2T 9In8td

"SUOT309s S50J0 A3Ts00STA (®B)

u ‘4amod @8sJaAu|

0¢ Ol e 8 L 9 & 174 ¢ _o
| T i I 1 |
X2
v
M‘.o_ ooo‘oge O
40! 000Gl ¥
e 0006 O
o
wip ‘d Mo ‘L
s|pijudjod o sa14ds |0d21jayjodAy .mw.
™ A0 X3
— 0
A A V-V 8-v 9~V

108Ul

T ‘Suoiyoas SsS040 JO 01Dy

(22

/

[4)

‘30
(22 <

85



*pepnIou0) - g SINITH

"SUOTY09S SSOXO UOTSNIITA (d)

u ‘1amod 3s1dAuU|
02 o6 8 L 9 S 1% ¢

.0l ooo‘oe O
Ol 000'¢l V
Ol 000 O

wyo‘d Mo'l

sjoljuajod jo Satias |DoIjaYodAH

‘39

U/ *°%Vq7y ‘suo1poas ssoud o ouDY

(aen =

an=

86




Viscosity, », gm/cm sec

=3
3x10 "~ I RN |
0Ol K| 5 9 99 |

Fraction ionized l

Second-order approximation and
25 first-order approximation

— — First-order approximation +
Hansen cross sections

p= 10-4 atm
7\
ok S/
//
/
/
1.5+
' L
S
?
0
5 10 15x10°

Temperature, T, °K
(a) p = 107 atm

Figure 13.- Comparison of methods for calculating the viscosity.
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Figure 15.- Bnergy of argon as a function of temperature.
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Dimensionless enthalpy, ZH/RT
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Figure 16.- Enthalpy of argon as a function of temperature.
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Dimensionless specific heat at constant density, ZcV/R
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Figure 18.- Concluded.
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Dimensionless specific heat at constant pressure, Zcp/R
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Figure 19.- Concluded.
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Figure 20.- Zero frequency speed-of-sound parameter of argon as a function
of temperature.
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Figure 21.- Real gas corrections in the equation of state.
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Figure 22.- Continued.
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